

International  
**IR** Rectifier

SCHOTTKY RECTIFIER

**72CPQ030PbF**

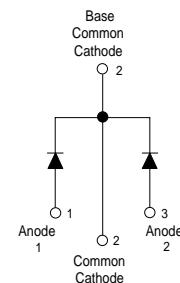
70 Amp

$I_{F(AV)} = 70\text{Amp}$   
 $V_R = 30\text{V}$

#### Major Ratings and Characteristics


| Characteristics                                              | Values     | Units |
|--------------------------------------------------------------|------------|-------|
| $I_{F(AV)}$ Rectangular waveform                             | 70         | A     |
| $V_{RRM}$                                                    | 30         | V     |
| $I_{FSM}$ @ $t_p = 5\mu\text{s}$ sine                        | 2180       | A     |
| $V_F$ @ $35\text{Apk}$ , $T_J = 125^\circ\text{C}$ (per leg) | 0.43       | V     |
| $T_J$ range                                                  | -55 to 150 | °C    |

#### Description/ Features


The 72CPQ030PbF center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to  $150^\circ\text{C}$  junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- $150^\circ\text{C}$   $T_J$  operation
- Center tap TO-247 package
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

#### Case Styles



TO-247AC



72CPQ030PbF

Bulletin PD-20799 rev. A 11/06

 International  
 Rectifier

## Voltage Ratings

|                                                 |             |  |  |
|-------------------------------------------------|-------------|--|--|
| Part number                                     | 72CPQ030PbF |  |  |
| $V_R$ Max. DC Reverse Voltage (V)               | 30          |  |  |
| $V_{RWM}$ Max. Working Peak Reverse Voltage (V) |             |  |  |

## Absolute Maximum Ratings

| Parameters                                                                        | 72CPQ    | Units | Conditions                                                                                                 |
|-----------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------------|
| $I_{F(AV)}$ Max. Average Forward (Per Leg) Current * See Fig. 5 (Per Device)      | 35<br>70 | A     | 50% duty cycle @ $T_J = 125^\circ\text{C}$ , rectangular wave form                                         |
| $I_{FSM}$ Max. Peak One Cycle Non-Repetitive Surge Current (Per Leg) * See Fig. 7 | 2180     | A     | 5μs Sine or 3μs Rect. pulse                                                                                |
|                                                                                   | 600      |       | Following any rated load condition and with 10ms Sine or 6ms Rect. pulse                                   |
| $E_{AS}$ Non-Repetitive Avalanche Energy (Per Leg)                                | 27       | mJ    | $T_J = 25^\circ\text{C}$ , $I_{AS} = 6$ Amps, $L = 1.5$ mH                                                 |
| $I_{AR}$ Repetitive Avalanche Current (Per Leg)                                   | 6        | A     | Current decaying linearly to zero in 1 μsec Frequency limited by $T_J$ max. $V_A = 1.5 \times V_R$ typical |

## Electrical Specifications

| Parameters                                                       | 72CPQ | Units | Conditions                                            |
|------------------------------------------------------------------|-------|-------|-------------------------------------------------------|
| $V_{FM}$ Max. Forward Voltage Drop (Per Leg) * See Fig. 1 (1)    | 0.51  | V     | $T_J = 25^\circ\text{C}$                              |
|                                                                  | 0.61  | V     |                                                       |
|                                                                  | 0.43  | V     | $T_J = 125^\circ\text{C}$                             |
|                                                                  | 0.58  | V     |                                                       |
| $I_{RM}$ Max. Reverse Leakage Current (Per Leg) * See Fig. 2 (1) | 1.9   | mA    | $T_J = 25^\circ\text{C}$<br>$T_J = 125^\circ\text{C}$ |
|                                                                  | 450   | mA    |                                                       |
| $V_{F(TO)}$ Threshold Voltage                                    | 0.25  | V     | $T_J = T_J$ max.                                      |
| $r_t$ Forward Slope Resistance                                   | 4.70  | mΩ    |                                                       |
| $C_T$ Max. Junction Capacitance (Per Leg)                        | 4600  | pF    | $V_R = \text{rated } V_R$                             |
| $L_S$ Typical Series Inductance (Per Leg)                        | 7.5   | nH    | Measured lead to lead 5mm from package body           |
| $dv/dt$ Max. Voltage Rate of Change                              | 10000 | V/μs  | (Rated $V_R$ )                                        |

(1) Pulse Width &lt; 300μs, Duty Cycle &lt;2%

## Thermal-Mechanical Specifications

| Parameters                                                                 | 72CPQ           | Units   | Conditions                           |
|----------------------------------------------------------------------------|-----------------|---------|--------------------------------------|
| $T_J$ Max. Junction Temperature Range                                      | -55 to 150      | °C      |                                      |
| $T_{sg}$ Max. Storage Temperature Range                                    | -55 to 150      | °C      |                                      |
| $R_{thJC}$ Max. Thermal Resistance Junction to Case (Per Leg) * See Fig. 4 | 0.8             | °C/W    | DC operation                         |
| $R_{thJC}$ Max. Thermal Resistance Junction to Case (Per Package)          | 0.4             | °C/W    | DC operation                         |
| $R_{thCS}$ Typical Thermal Resistance, Case to Heatsink                    | 0.25            | °C/W    | Mounting surface, smooth and greased |
| wt Approximate Weight                                                      | 6 (0.21)        | g (oz.) |                                      |
| T Mounting Torque                                                          | Min.            | 6 (5)   | Kg-cm (lbf-in)                       |
|                                                                            | Max.            | 12 (10) |                                      |
| Case Style                                                                 | TO-247AC(TO-3P) |         | JEDEC                                |
| Marking Information                                                        | 72CPQ030        |         |                                      |

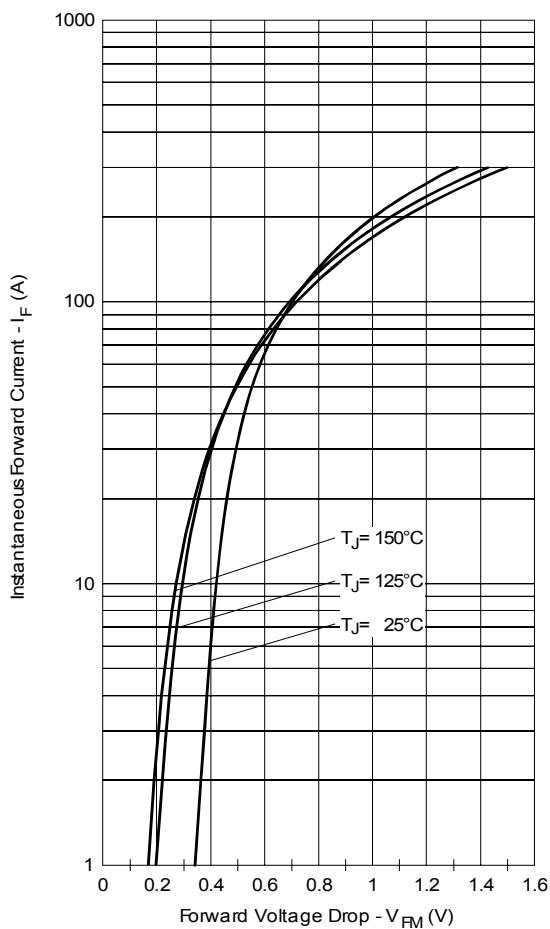



Fig. 1 - Max. Forward Voltage Drop Characteristics  
 (Per Leg)

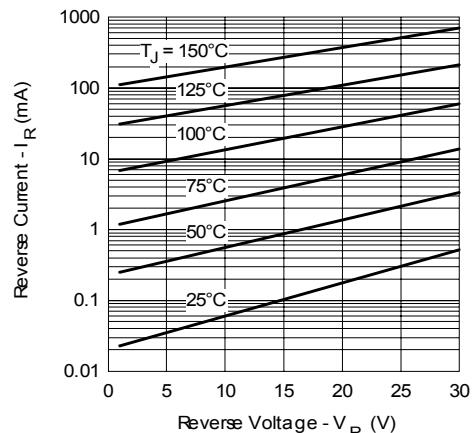



Fig. 2 - Typical Values Of Reverse Current  
 Vs. Reverse Voltage (Per Leg)

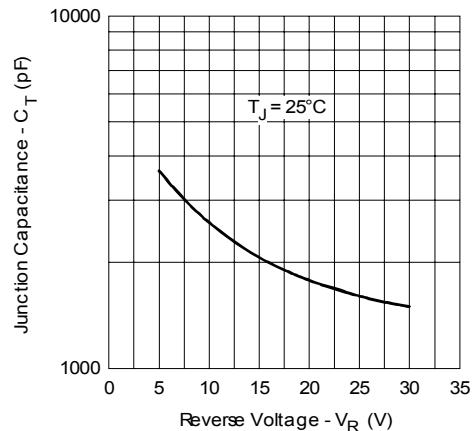



Fig. 3 - Typical Junction Capacitance  
 Vs. Reverse Voltage (Per Leg)

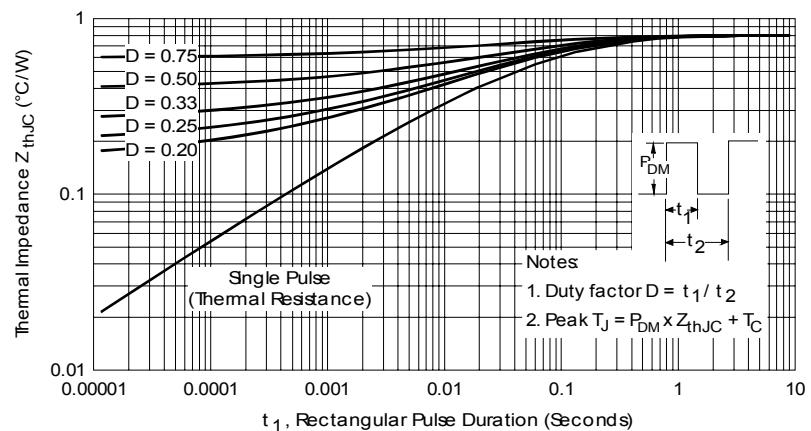



Fig. 4 - Max. Thermal Impedance  $Z_{thJC}$  Characteristics (Per Leg)



Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

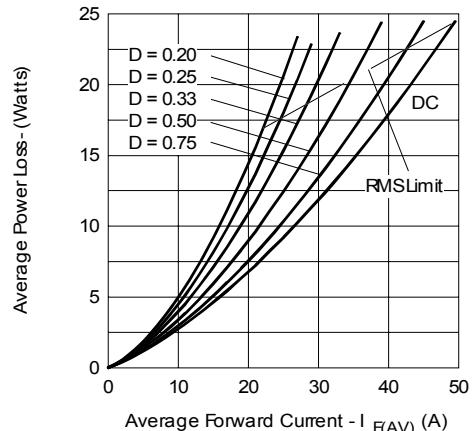



Fig. 6 - Forward Power Loss Characteristics (Per Leg)

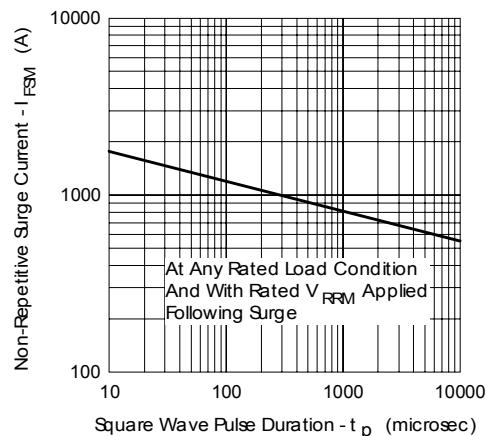
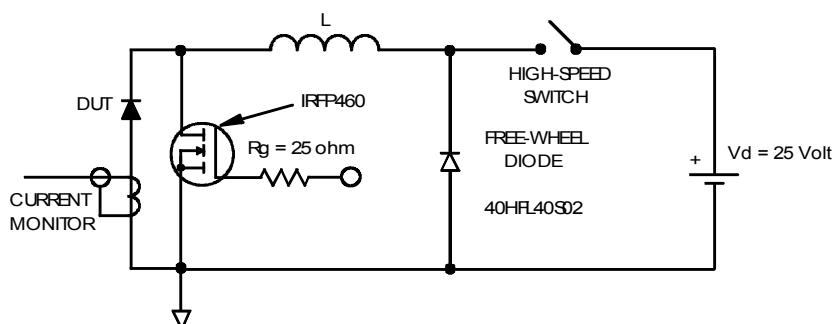
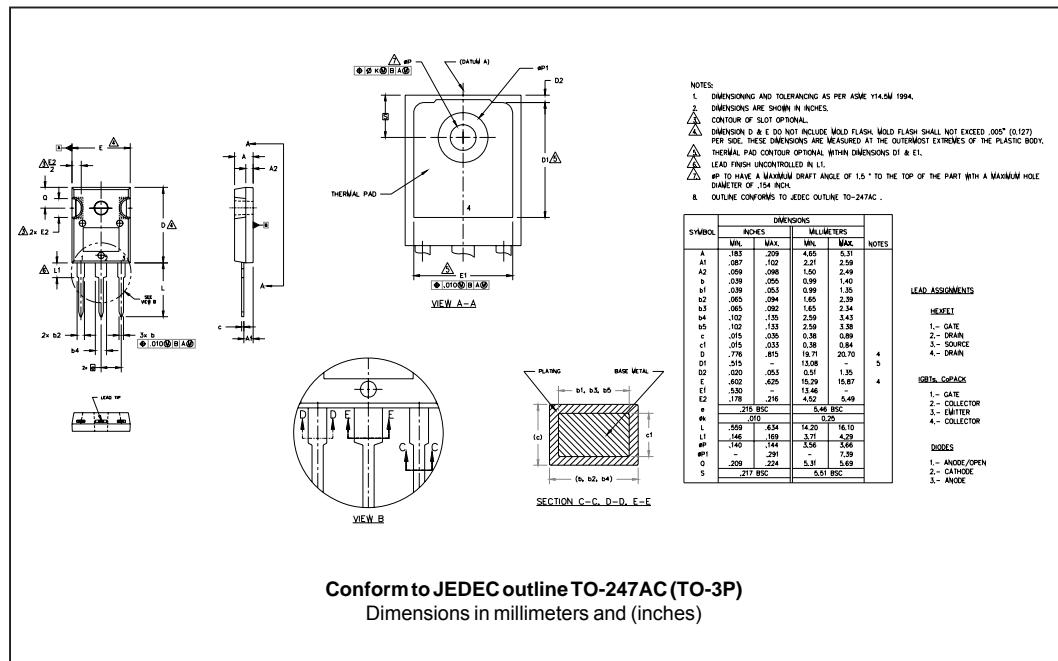
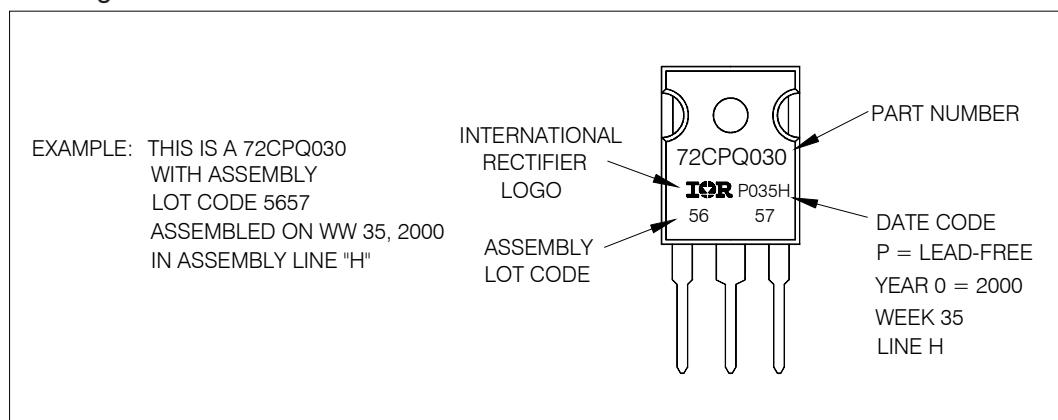



Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)



Fig. 8 - Unclamped Inductive Test Circuit

(2) Formula used:  $T_C = T_J - (P_d + P_{d,REV}) \times R_{thJC}$ ;  
 $P_d = \text{Forward Power Loss} = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$  (see Fig. 6);  
 $P_{d,REV} = \text{Inverse Power Loss} = V_{R1} \times I_R (1 - D)$ ;  $I_R @ V_{R1} = 80\% \text{ rated } V_R$

Outline Table



Marking Information



72CPQ030PbF

Bulletin PD-20799 rev. A 11/06

International  
**IR** Rectifier

### Ordering Information Table

| Device Code                                                  | 72 | C | P | Q | 030 | PbF |
|--------------------------------------------------------------|----|---|---|---|-----|-----|
|                                                              | 1  | 2 | 3 | 4 | 5   | 6   |
| <b>1</b> - Current Rating (70A)                              |    |   |   |   |     |     |
| <b>2</b> - Circuit Configuration<br>C = Common Cathode       |    |   |   |   |     |     |
| <b>3</b> - Package<br>P = TO-247                             |    |   |   |   |     |     |
| <b>4</b> - Schottky "Q" Series                               |    |   |   |   |     |     |
| <b>5</b> - Voltage Code (030 = 30V)                          |    |   |   |   |     |     |
| <b>6</b> - • none = Standard Production<br>• PbF = Lead-Free |    |   |   |   |     |     |
| Tube Standard Pack Quantity : 25 pieces                      |    |   |   |   |     |     |

Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial Level and Lead-Free.  
Qualification Standards can be found on IR's Web site.

International  
**IR** Rectifier

**IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7309  
11/06



### Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.