Programmable Controller OP2ㄹ

Micro PLC designed to

 support data collection andMachine to Machine communication

- Network Model features Ethernet connectivity +4-axis positioning: CP2E-N type
- Standard Model features axis control: CP2E-S type
- Essential Model features basic control: CP2E-E type

Features

- Two built-in Ethernet ports with Ethernet switching function:

Ready for Machine to Machine communication (CP2E-N type)

- Up to three serial ports: Open connectivity to serial devices (CP2E-N type)
- Four-axis positioning function with linear interpolation (CP2E-N type)
- Battery-free operation and backup reduce maintenance
- Function blocks and structured text improve programming efficiency
- Operating temperature range from -20 to $60^{\circ} \mathrm{C}$ for reliable use in special applications
- Input/output terminal LED indicators for quick troubleshooting

CP2E

System Configuration

N $\square \square$-type CPU Unit

S $\square \square$-type CPU Unit

E $\square \square$-type CPU Unit

CP2E

Model Number Structure

Ordering Information

Applicable standards

Refer to the OMRON website (www.ia.omron.com) or ask your OMRON representative for the most recent applicable standards for each model.

CPU Unit

CP2E-N-type/Network model

Number of points	Specifications								Model
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity	Current consumption		
							5 VDC	24 VDC	
CPU Units with 14 points	100 to 240 VAC	8 points	6 points	Relay	10K steps (FB capacity: 10K steps)	16K words	0.15 A	0.05 A	CP2E-N14DR-A
				Transistor (sinking)			0.21 A	0.02 A	CP2E-N14DT-A
	24 VDC			Relay			0.15 A	0.05 A	CP2E-N14DR-D
				Transistor (sinking)			0.21 A	0.02 A	CP2E-N14DT-D
				Transistor (sourcing)			0.22 A	0.02 A	CP2E-N14DT1-D
CPU Units with 20 points	100 to 240 VAC	12 points	8 points	Relay			0.17 A	0.06 A	CP2E-N20DR-A
				Transistor (sinking)			0.27 A	0.02 A	CP2E-N20DT-A
	24 VDC			Relay			0.17 A	0.06 A	CP2E-N20DR-D
				Transistor (sinking)			0.27 A	0.02 A	CP2E-N20DT-D
				Transistor (sourcing)			0.26 A	0.02 A	CP2E-N20DT1-D
CPU Units with 30 points	100 to 240 VAC	18 points	12 points	Relay			0.41 A	0.07 A	CP2E-N30DR-A
				Transistor (sinking)			0.52 A	0.03 A	CP2E-N30DT-A
	24 VDC			Relay			0.37 A	0.07 A	CP2E-N30DR-D
				Transistor (sinking)			0.51 A	0.03 A	CP2E-N30DT-D
				Transistor (sourcing)			0.51 A	0.03 A	CP2E-N30DT1-D
CPU Units with 40 points	100 to 240 VAC	24 points	16 points	Relay			0.39 A	0.09 A	CP2E-N40DR-A
				Transistor (sinking)			0.59 A	0.03 A	CP2E-N40DT-A
	24 VDC			Relay			0.39 A	0.09 A	CP2E-N40DR-D
				Transistor (sinking)			0.59 A	0.03 A	CP2E-N40DT-D
				Transistor (sourcing)			0.59 A	0.03 A	CP2E-N40DT1-D
CPU Units with 60 points	100 to 240 VAC	36 points	24 points	Relay			0.44 A	0.13 A	CP2E-N60DR-A
				Transistor (sinking)			0.71 A	0.03 A	CP2E-N60DT-A
	24 VDC			Relay			0.41 A	0.13 A	CP2E-N60DR-D
				Transistor (sinking)			0.71 A	0.03 A	CP2E-N60DT-D
				Transistor (sourcing)			0.71 A	0.03 A	CP2E-N60DT1-D

CP2E-S-type/Standard model

Number of points	Specifications								Model
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity	Current consumption		
							5 VDC	24 VDC	
CPU Units with 30 points	100 to 240 VAC	18 points	12 points	Relay	8K steps (FB capacity: 8K steps)	8K words	0.12 A	0.07 A	CP2E-S30DR-A
	24 VDC			Transistor (sinking)			0.28 A	0.02 A	CP2E-S30DT-D
				Transistor (sourcing)					CP2E-S30DT1-D
CPU Units with 40 points	100 to 240 VAC	24 points	16 points	Relay			0.13 A	0.09 A	CP2E-S40DR-A
	24 VDC			Transistor (sinking)					CP2E-S40DT-D
				Transistor (sourcing)					CP2E-S40DT1-D
CPU Units with 60 points	100 to 240 VAC	36 points	24 points	Relay			0.16 A	0.13 A	CP2E-S60DR-A
	24 VDC			Transistor (sinking)			0.48 A	0.02 A	CP2E-S60DT-D
				Transistor (sourcing)					CP2E-S60DT1-D

CP2E-E-type/Essential model

Optional Products

Battery

Product name	Specifications	Model
Battery	Mounted in an N/Sロロ-type CPU Unit. Mount the Battery when using the clock function. A Battery cannot be mounted to an E \square-type CPU Unit.	CP2W-BAT02

Option Board

Product name	Specifications	Current consumption		Model
		5 VDC	24 VDC	
RS-232C Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an RS-232C port. Maximum transmission distance: 15 m	0.04 A	---	CP1W-CIF01
Non-isolated RS-422A/485 Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an RS-422A/485 port. Maximum transmission distance: 50 m	0.04 A	---	CP1W-CIF11
Isolated RS-422A/485 Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an RS-422A/485 port. Maximum transmission distance: 500 m	0.04 A	---	CP1W-CIF12-V1
RS-232C\&RS-232C Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as two RS-232C ports. Maximum transmission distance: 15 m	0.04 A	---	CP2W-CIFD1
RS-232C\&RS-485 Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as one RS-232C port and one isolated RS-485 port. Maximum transmission distance: $\begin{aligned} & 15 \mathrm{~m} \text { (RS-232C) } \\ & 500 \mathrm{~m} \text { (RS-485) } \end{aligned}$	0.06 A	---	CP2W-CIFD2
RS-485\&RS-485 Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as two isolated RS-485 ports. Maximum transmission distance: 500 m	0.08 A	---	CP2W-CIFD3
Analog Input Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an analog input module. - 2 analog inputs 0 to 10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/2000)	0.02 A	---	CP1W-ADB21
Analog Output Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an analog output module. - 2 analog outputs 0 to 10 V (Resolution: 1/4000)	0.06 A	---	CP1W-DAB21V
Analog Input/Output Option Board	Mounted in the option slot of an N $\square \square$-type CPU Unit and can be used as an analog input/output module. - 2 analog inputs 0 to 10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/2000) - 2 analog outputs 0 to 10 V (Resolution: 1/4000)	0.08 A	---	CP1W-MAB221

Note: 1. Maximum one Analog Option Board can be mounted on an N $\square \square$-type CPU Unit.
2. The CP1W-ME05M Memory Cassette, CP1W-DAM01 LCD Option Board, and CP1W-CIF41 Ethernet Option Board cannot be used with the CP2E CPU Unit.
3. Option Boards cannot be used with the E/S $\square \square$-type CPU Unit.

Expansion I/O Units and Expansion Units (for E30/40/60, S30/40/60, or N30/40/60 CPU Units)
E14/20 or N14/20 CPU Units do not support Expansion I/O Units and Expansion Units.

Unit type	Product name	Specifications				$\begin{gathered} \text { Current } \\ \text { consumption (A) } \end{gathered}$		Model
		Inputs	Outputs	Output type		5 V	24 V	
CP1W Expansion I/O Units	Input Unit	8	---	24 VDC Input		0.018	---	CP1W-8ED
	Output Units	---	8	Relay		0.026	0.044	CP1W-8ER
				Transistor (sinking)		0.075	---	CP1W-8ET
				Transistor (sourcing)		0.075	---	CP1W-8ET1
				Relay		0.042	0.090	CP1W-16ER
		---	16	Transistor (sinking)		0.076	---	CP1W-16ET
				Transistor (sourcing)		0.076	---	CP1W-16ET1
				Relay		0.049	0.131	CP1W-32ER
		---	32	Transistor (sinking)		0.113	---	CP1W-32ET
				Transistor (sourcing)		0.113	---	CP1W-32ET1
	I/O Units	12	8	Relay		0.103	0.044	CP1W-20EDR1
	오ำ			Transistor (sinking)		0.130	---	CP1W-20EDT
				Transistor (sourcing)		0.130	---	CP1W-20EDT1
		24	16	Relay		0.080	0.090	CP1W-40EDR
				Transistor (sinking)		0.160	---	CP1W-40EDT
				Transistor (sourcing)		0.160	---	CP1W-40EDT1
CP1W Expansion Units	Analog Input Unit	4 CH	---	Input range: 0 to 5 V , 1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	Resolution: 1/6000	0.100	0.090	CP1W-AD041
					Resolution: 1/12000	0.100	0.050	CP1W-AD042
	Analog Output Unit	---	2 CH	Output range: 1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	Resolution: 1/6000	0.040	0.095	CP1W-DA021
		---	4CH		Resolution: 1/6000	0.080	0.124	CP1W-DA041
		---			$\begin{aligned} & \text { Resolution: } \\ & 1 / 12000 \end{aligned}$	0.070	0.160	CP1W-DA042
	Analog I/O Unit	4 CH	4 CH	Input range: 0 to 5 V , 1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA . Output range: 1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	Resolution: 1/12000	0.120	0.170	CP1W-MAD44
		4 CH	2 CH		$\begin{aligned} & \text { Resolution: } \\ & 1 / 12000 \end{aligned}$	0.120	0.120	CP1W-MAD42
		2 CH	1 CH		Resolution: 1/6000	0.083	0.110	CP1W-MAD11
	Temperature Sensor Unit	2CH	---	Sensor type: Thermocouple (J or K)		0.040	0.059	CP1W-TS001
		4CH	---	Sensor type: Thermocouple (J or K)		0.040	0.059	CP1W-TS002
		2 CH	---	Sensor type: Platinum resistance thermometer (Pt100 or JPt100)		0.054	0.073	CP1W-TS101
		4CH	---	Sensor type: Platinum resistance thermometer (Pt100 or JPt100)		0.054	0.073	CP1W-TS102
		4CH	---	Sensor type: Thermocouple (J or K) 2channels can be used as analog input. Input range: 1 to 5 V, 0 to 10 V, 4-20 mA	$\begin{aligned} & \text { Resolution: } \\ & 1 / 12000 \end{aligned}$	0.070	0.030	CP1W-TS003
		12CH	---	Sensor type: Thermocouple (J or K)		0.080	0.050	CP1W-TS004

I/O Connecting Cable

Product name	Specifications	Model
I/O Connecting Cable	80 cm (for CP1W Expansion I/O Units and Expansion Units) Only one I/O Connecting Cable can be used in each PLC.	CP1W-CN811

DIN Track Accessories

Name		Specifications
DIN Track	Length: $0.5 \mathrm{~m} ;$ Height: 7.3 mm	Model
	Length: $1 \mathrm{~m} ;$ Height: 7.3 mm	PFP-50N
	Length: 1 m ; Height: 16 mm	PFP-100N
End Plate	A stopper to secure the Units on the DIN Track.	PFP-100N2

Programming Devices

Software

Product name	Specifications			Model
		Number of licenses	Media	
FA Integrated Tool Package CX-One Lite Ver.4.	CX-One Lite is a subset of the complete CX-One package that provides only the Support Software required for micro PLC applications. CX-One Lite runs on the following OS. OS: Windows XP (Service Pack 3 or higher, 32-bit version) / Windows Vista (32-bit/64-bit version) / Windows 7 (32 -bit/64-bit version) / Windows 8 (32 -bit/64-bit version) / Windows 8.1 (32-bit/64-bit version) / Windows 10 (32-bit/64-bit version) CX-One Lite Ver. 4. \square includes Micro PLC Edition CX-Programmer Ver.9.■.	1 license	DVD	CXONE-LT01D-V4
FA Integrated Tool Package CX-One Package Ver. 4.	CX-One is a comprehensive software package that integrates Support Software for OMRON PLCs and components. CX-One runs on the following OS. OS: Windows XP (Service Pack 3 or higher, 32-bit version) / Windows Vista (32-bit/64-bit version) / Windows 7 (32-bit/64-bit version) / Windows 8 (32 -bit/ 64 -bit version) / Windows 8.1 (32-bit/64-bit version) / Windows 10 (32-bit/64-bit version) CX-One Ver. 4. \square includes CX-Programmer Ver. 9. \square.	1 license *1	DVD	CXONE-AL01D-V4

Note: 1. CP2E CPU Units are supported by CX-One version 4.51 or higher and CX-Programmer version 9.72 or higher.
2. The CX-One and CX-One Lite cannot be simultaneously installed on the same computer.
3. For details, refer to the CX-One Catalog (Cat. No. R134).
*1. Multi licenses ($3,10,30$, or 50 licenses) and DVD media without licenses are also available for the CX-One.

CP2E

General Specifications

Item		AC power supply	DC power supply
Model		CP2E- $\square \square \square D \square-A$	CP2E- $\square \square \square \mathrm{D} \square$-D
Enclosure		Mounted in a panel	
Dimensions ($\mathrm{H} \times \mathrm{D} \times \mathrm{W}$)		CPU Unit with 14 or 20 I/O points (CP2E- $\square 14 / 20 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 80 \mathrm{~mm} * 2 \times 86 \mathrm{~mm}$ CPU Unit with 30 I/O points (CP2E- $\square 30 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 80 \mathrm{~mm} * 2 \times 130 \mathrm{~mm}$ CPU Unit with 40 I/O points (CP2E- $\square 40 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 80 \mathrm{~mm} * 2 \times 150 \mathrm{~mm}$ CPU Unit with 60 I/O points (CP2E- $\square 60 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 80 \mathrm{~mm} * 2 \times 195 \mathrm{~mm}$	
Weight		CPU Unit with 14 I/O points (CP2E- $\square 14 \mathrm{D} \square-\square$): 335 g max. CPU Unit with 20 I/O points (CP2E- $\square 20 \mathrm{D} \square-\square$): 340g max. CPU Unit with 30 I/O points (CP2E- $\square 30 \mathrm{D} \square-\square$): 580 g max. CPU Unit with 40 I/O points (CP2E- $\square 40 \mathrm{D} \square-\square$): 640 g max. CPU Unit with 60 I/O points (CP2E- $\square 60 \mathrm{D} \square-\square$): 780g max.	
Electrical specifications	Supply voltage	100 to 240 VAC $50 / 60 \mathrm{~Hz}$	24 VDC
	Operating voltage range	85 to 264 VAC	20.4 to 26.4 VDC
	Power consumption	15 VA/100 VAC max. \quad (CP2E- $\square 14 / 20 D \square-A)$	13W max. (CP2E- $\square 14 / 20 \mathrm{D} \square$-D)
		50 VA/100 VAC max. $\quad(C P 2 E-\square 30 / 40 / 60 D \square-A)$ 70 VA/240 VAC max.	20W max. (CP2E- $\square 30 / 40 / 60 \mathrm{D} \square$-D) $* 4$
	Inrush current	120 VAC, 20 A for 8 ms max. for cold start at room temperature 240 VAC, 40 A for 8 ms max. for cold start at room temperature	24 VDC, 30A for 20 ms max. for cold start at room temperature
	External power supply $* 3$	Not provided. (CP2E- $\square 14 / 20 \mathrm{D} \square$-A) 24 VDC, 300 mA (CP2E- $\square 30 / 40 / 60 \mathrm{D} \square$-A)	Not provided.
	Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between the external AC terminals and GR terminals	Not csolated between primary and secondary DC power supplies
	Dielectric strength	2,300 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between AC external and GR terminals Leakage current: 5 mA max.	Not csolated between primary and secondary DC power supplies
	Power interrupt time	10 ms min .	$2 \mathrm{~ms} \mathrm{min}$.
Application environment	Ambient operating temperature	-20 to $60^{\circ} \mathrm{C}$	
	Ambient humidity	10\% to 90\%	
	Atmosphere	No corrosive gas.	
	Ambient storage temperature	-20 to $75^{\circ} \mathrm{C}$ (excluding battery)	
	Altitude	2,000 m max.	
	Pollution degree	2 or less: Conforms to IEC61010-2-201.	
	Noise resistance	2 kV on power supply line (Conforms to IEC61000-4-4.)	
	Overvoltage category	Category II: Conforms to IEC61010-2-201.	
	EMC immunity level	Zone B	
	Vibration resistance	Conforms to IEC60068-2-6. 5 to 8.4 Hz with $3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz Acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 100 min in X, Y, and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)	
	Shock resistance	Conforms to IEC60068-2-27. $147 \mathrm{~m} / \mathrm{s}^{2}$, 3 times in X, Y, and Z directions	
Terminal block		Fixed (not removable)	
Terminal screw size		M3	
Applicable standards		Conforms to EC Directives.	
Grounding method		Ground to 100Ω or less.	

*1. Total of 110 mm with mounting brackets.
*2. Excluding cables.
*3. Use the external power supply to power input devices. Do not use it to drive output devices.
$* 4$. This is the rated value for the maximum system configuration. Use the following formula to calculate power consumption for CPU Units with DC power.
Formula: DC power consumption $=(5 \mathrm{~V}$ current consumption $\times 5 \mathrm{~V} / 70 \%$ (internal power efficiency) +24 V current consumption) $\times 1.1$ (current fluctuation factor)
The above calculation results show that a DC power supply with a greater capacity is required.
Note: 1. The Expansion I/O Units and Expansion Units work under the same conditions as the CPU Units unless otherwise specified.

Performance Specifications

Item			CP2E-E $\square \square$ D \square - \square	CP2E-S $\square \square$ D \square - \square	CP2E-N $\square \square$ D \square - \square
Program capacity			4K steps	8K steps	10K steps
FB capacity			4K steps	8K steps	10K steps
Control method			Stored program method		
I/O control method			Cyclic scan with immediate refreshing		
Program language			Ladder diagram		
Function blocks			Maximum number of function block definitions: 64 Maximum number of instances: 128 Languages usable in function block definitions: Ladder diagrams, structured text (ST)		
Instructions			Approximately 220		
Processing speed	Overhead processing time		0.1 ms	0.15 ms	0.2 ms
	Instruction execution times		LD $0.23 \mu \mathrm{~s}$ MOV $1.76 \mu \mathrm{~s}$		
Number of CP1W-series Expansion I/O Units and Expansion Units connected			CP2E- $\square 14 / 20 D \square-\square$: None CP2E- $\square 30 / 40 / 60 D \square-\square$: 3 units		
Maximum number of I/O points			CP2E- $\square 14 \mathrm{D} \square-\square: 14$CP2E- $\square 20 \mathrm{D} \square-\square: 20$CP2E- $-30 \mathrm{D} \square-\square: 150$ (30 built in, 40×3 expansion)CP2E- $-40 D \square \square: 160$ (40 built in, 40×3 expansion)CP2E- $\square 60 \mathrm{D} \square-\square: 180$ (60 built in, 40×3 expansion)		
Built-in input function	High-speed counters	High-speed counter mode/maximum frequency	Incremental Pulse Inputs $100 \mathrm{kHz}: 2$ counters $10 \mathrm{kHz}: 4$ counters Up/Down Inputs 100 kHz : 1 counter 10 kHz : 1 counter Pulse + Direction Inputs 100 kHz : 2 counters Differential Phase Inputs (4x) 50 kHz : 1 counter 5 kHz : 1 counter		N14/20D $\square-\square$ Incremental Pulse Inputs 100 kHz : 2 counters 10 kHz : 4 counters Up/Down Inputs 100 kHz : 1 counter $10 \mathrm{kHz}: 1$ counter Pulse + Direction Inputs 100 kHz : 2 counters Differential Phase Inputs (4x) $50 \mathrm{kHz}: 1$ counter 5 kHz : 1 counter N30/40/60D $\square-\square$ Incremental Pulse Inputs 100 kHz : 3 counters 10 kHz : 3 counters Up/Down Inputs $100 \mathrm{kHz}: 2$ counters, Pulse + Direction Inputs 100 kHz 2 counters Differential Phase Inputs (4x) 50 kHz : 2 counters
		Counting mode	- Linear mode - Ring mode		
		Count value	32 bits		
		Counter reset modes	- Phase Z and software reset (excluding increment pulse input) - Software reset		
		Control method	- Target matching - Range comparison		
	Input interrupts		6 inputs		8 inputs (6 inputs only for 14 I/O points)
			Interrupt input pulse width: $50 \mu \mathrm{~s}$ min.		
	Quick-response inputs		6 inputs		8 inputs (6 inputs only for 14 I/O points)
			Input pulse width: $50 \mu \mathrm{~s}$ min.		
	Normal input	Input constants	Delays can be set in the PLC setup (0 to 32 ms , default: 8 ms). Set values: $0,1,2,4,8,16$, or 32 ms		

Item			CP2E-E $\square \square$ D \square - \square	CP2E-S $\square \square \mathrm{D} \square$ - \square	CP2E-N $\square \square \mathrm{D} \square$ - \square
Built-in output function	Pulse outputs (Models with transistor outputs only)	Pulse output	Pulse output function not included	Pulse + Direction Mode	
		Frequency		1 Hz to 100 kHz : 2 outputs	N14/20D $\square-\square$ 1 Hz to 100 kHz : 2 outputs N30/40/60D \square - 1 Hz to $100 \mathrm{kHz}: 4$ outputs
		Output mode		- Continuous mode (for speed control) - Independent mode (for position control)	
		Number of output pulses		- Relative coordinates: 00000000 to 7FFF FFFF hex (0 to 2147483647) - Absolute coordinates: 80000000 to 7FFF FFFF hex (-2147483647 to 2147483647)	
		Acceleration/ deceleration curves		Trapezoidal acceleration and deceleration (Cannot perform S-curve acceleration and deceleration).	
		Changing SVs during instruction execution		Only target position can be changed.	
		Origin searches		Included	
		Linear interpolation		None	```N14/20D\square-\square 2 axes max. N30/40/60D\square-\square 4 axes max.```
		Frequency	PWM output function not included	2.0 to $6,553.5 \mathrm{~Hz}$ (in increments of 0.1 Hz) with 1 output or 2 Hz to $32,000 \mathrm{~Hz}$ (in increments of 1 Hz) with 1 output	
		Duty factor		0.0% to 100.0% (in increments of 0.1%) Accuracy: $+1 \% /-0 \%$ at 2 Hz to $10,000 \mathrm{~Hz}$ and $+5 \% /-0 \%$ at $10,000 \mathrm{~Hz}$ to $32,000 \mathrm{kHz}$	
		Output mode		Continuous Mode	
Communicatio ns	Peripheral USB port		Conforming to USB 2.0 B-type conntor		None
		Transmission distance	5 m max.		
	Built-in RS232C port		Interface: Conforming to EIA RS-232C		None
		Transmission distance	15 m max.		
		Communications method	Half duplex		
		Synchronization	Start-stop		
		Baud rate	1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, or 115.2 kbps		
		Supported protocol	- Host Link - 1:N NT Link - No-protocol mode - Serial PLC Links (master, slave) - Modbus-RTU Easy Master - Modbus-RTU Slave		
	Built-in RS485 port (not isolated)		None	Interface: Conforming to EIA RS-485 RS-485	None
		Transmission distance		50 mmax .	
		Communications method		Half duplex	
		Synchronization		Start-stop	
		Baud rate		$\begin{aligned} & 1.2,2.4,4.8,9.6,19.2,38.4 \text {, } \\ & 57.6 \text {, or } 115.2 \mathrm{kbps} \end{aligned}$	
		Supported protocol		- Host Link - 1:N NT Link - No-protocol mode - Serial PLC Links (master, slave) - Modbus-RTU Easy Master - Modbus-RTU Slave	

Item			CP2E-Eप \square D $\square-\square$	CP2E-S $\square \square$ D $\square-\square$	CP2E-NロロD \square - \square
Communicatio ns		Number of Option Boards			```N14/20D\square-\square 1 Option Board N30/40/60D\square-\square 2 Option Boards```
		Number of serial communications			N14/20D $\square-\square$ 2 ports max. N30/40/60D \square - \square 3 ports max.
		Communications method			Depends on Option Board
		Synchronization			Depends on Option Board
		Baud rate			1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, or 115.2 kbps
	Serial Option port	Mountable Option Boards	None		Serial Communication Option Board with one port - One RS-232C port: CP1W-CIF01 (Start-stop) - One RS-422A/485 port (not isolated): CP1W-CIF11 (Start-stop) - One RS-422A/485 port (isolated): CP1W-CIF12-V1 (Start-stop) Serial Communication Option Board with two ports *1 - Two RS-232C ports: CP2W-CIFD1 (Start-stop) - One RS-232C port and one RS485 port (isolated): CP2W-CIFD2 (Start-stop) - Two RS-485 ports (isolated): CP2W-CIFD3 (Start-stop) Analog Option Board $* 2$ CP1W-MAB221/ADB21/DAB21V *1. CP2W-CIFD \square can only be mounted on option slot 1 . *2. Maximum one Analog Option Board can be mounted on an N $\square \square$-type CPU Unit.
		Compatible protocols			- Host Link* - 1:N NT Link* - No-protocol mode - Serial PLC Links (master, slave) - Modbus-RTU Easy Master - Modbus-RTU Slave * PORT1 (EX) is not supported.
	Ethernet	Physical layer	None		100/10BASE-TX (Auto-MDIX)
		Media access methiod			CSMA/CD
		Modulation			Baseband
		Baud rate			100BASE-TX: 100Mbit/s 10BASE-T: 10Mbit/s - Half/full auto-negotiation for each port - Link speed auto-sensing for each port
		Transmission media			100BASE-TX - Unshielded twisted-pair (UDP) cable Categories: 5, 5e - Shielded twisted-pair (STP) cable Categories: 100Ω at $5,5 e$ 10BASE-T - Unshielded twisted-pair (UDP) cable Categories: 3, 4, 5, 5e - Shielded twisted-pair (STP) cable Categories: 100Ω at 3,4 , 5, 5e
		Transmission distance			100 m (distance between switch and node)
		Protocol			TCP, UDP, APR, ICMP (ping only), SNTP, DNS
		Applications			FINS, Socket, SNTP, DNS (Client)
		Number of Ethernet ports			N14/20: 1 port N30/40/60: 2 ports
		Ethernet switch			Layer 2 switch * N14/20 is not supported.

Item		CP2E-E $\square \square$ D \square - \square	CP2E-S $\square \square \mathrm{D} \square$ - \square	CP2E-NロपD \square - \square
Number of tasks		17 - 1 cyclic task - 16 interrupt tasks Scheduled interrupt task: Interrupt task 1 (fixed) Built-in input interrupt task: Interrupt task 2 to 9 (IN8 and IN9 can only be used in N20/30/40/60 CPU Units) High-speed counter interrupt task: Interrupt task 1 to 16		
Maximum subroutine number		128		
Maximum jump number		128		
Scheduled interrupt tasks		1 interrupt task		
Battery service life *With CP2W-BAT02 Battery (optional)		Battery cannot be mounted.	CP2W-BAT02 can be mounted. Maximum battery service life: 5 years Guaranteed Lifetime Ambient temperature is $60^{\circ} \mathrm{C}: 13,000$ hours (approx. 1.5 years) Ambient temperature is $25^{\circ} \mathrm{C}: 43,000$ hours (approx. 5 years)	
Clock		None	Supported. Accuracy (monthly deviation): -4.5 min to -0.5 min (ambient temperature: $60^{\circ} \mathrm{C}$), -2.0 min to +2.0 min (ambient temperature: $25^{\circ} \mathrm{C}$), -2.5 min to +1.5 min (ambient temperature: $-20^{\circ} \mathrm{C}$)	
Memory backup	Built-in Flash Memory	Ladder programs and parameters are automatically saved to built-in Flash Memory. A section of the Data Memory Area can be saved to the built-in Flash Memory.		
	Built-in non-volatile memory	Data Memory Area (D), Holding Area (H), Counter Area (C) and Auxiliary Area (A) are automatically saved to the built-in non-volatile memory.		
CIO Area	Input Bits	1,600 bits (100 words): ClO 0.00 to ClO 99.15 (CIO 00 to CIO 99)		
	Output Bits	1,600 bits (100 words): CIO 100.00 to CIO 199.15 (CIO 100 to CIO 199)		
	Serial PLC Link Words	1,440 bits (90 words): ClO 200.00 to ClO 289.15 (CIO 200 to ClO 289)		
Work Area (W)		2,048 bits (128 words): W0.00 to W127.15 (W0 to W127)		
Holding Area (H)		2,048 bits (128 words): H0.00 to H127.15 (H0 to 127) Words H 512 to H 1535 : These words can be used only for function blocks.		
Auxiliary Area (A)		Read-only: 7,168 bits (448 words): A0.00 to A447.15 (A0 to A447) Read/write: 8,192 bits (512 words): A448.00 to A959.15 (A448 to A959)		
Temporary Area (TR)		16 bits: TR0 to TR15		
Timer Area (${ }^{\text {(}}$		256 timer numbers (T0 to T255 (separate from counters)) Words T256 to T511: These words can be used only for function blocks.		
Counter Area (C)		256 counter numbers (C0 to C255 (separate from timers)) Words C256 to C511: These words can be used only for function blocks.		
Data Memory Area (D)		4 K words: D0 to D4095 DM backup: 1,500 words (D0 to D1499)	8 K words: D0 to D8191 DM backup: 7,000 words (D0 to D6999)	16 K words: D0 to D16383 DM backup: 15,000 words (D0 to D14999)
Index Registers (IR)		16 registers: IR0 to IR15		
Data Registers (DR)		16 registers: DR0 to DR15		
Operating modes				

Internal Memory in the CPU Units

CPU Unit Memory Backup Structure

The internal memory in the CPU Unit consists of built-in RAM and built-in Flash Memory. The built-in RAM is used as execution memory and the built-in Flash Memory is used as backup memory.

CP2E

Part Names and Functions

CP2E

Built-in Inputs

Terminal Arrangements

-14 points

AC power supply
CP2E-प14DD-A

CIO 0									
L1 L2	L2/N CO	M 0	01	03	0		07	NC	C NC
NC	c ${ }^{-}$	00	02		04	06	NC	NC	NC

L1,L2/N : Power supply terminal
$\overbrace{\mathrm{FOM}} \quad$: Protective ground terminal
: Common terminal
00 to 07 : Input terminal
NC $\quad:$ No connection

DC power supply
CP2E-N14DD-D

CIO												
		co	M	1	03		05		7	NC		NC
NC		©	00	0	2	04		06	N	C	NC	

+,-	: Power supply terminal
$\stackrel{\square}{0}$: Protective ground terminal
COM	: Common terminal
00 to 07	: Input terminal
NC	: No connection

-20 points

AC power supply
CP2E- $\square 20 \mathrm{D} \square-\mathrm{A}$
CIO

| L 1 | $\mathrm{~L} 2 / \mathrm{N}$ | COM | 01 | 03 | 05 | 07 | 09 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \begin{tabular}{\|l|l|l|l|l|l|l|l|}
\hline
\end{tabular} | | | | | | | | |

L1,L2/N : Power supply terminal
$\overbrace{5} \quad$: Protective ground terminal
COM \quad : Common terminal
00 to 11 : Input terminal
NC \quad : No connection

DC power supply
CP2E-N20DD-D

+	-	co			03		05		7	9	11
	C	$\stackrel{\ominus}{*}$	00	02		04		06	08	10	

,+-	: Power supply terminal
	: Protective ground terminal
	: Common terminal
00 to 11	: Input terminal
NC	: No connection

-30 points

AC power supply
CP2E- $\square 30 \mathrm{D} \square-\mathrm{A}$

L1, L2/N	: Power supply terminal
COM	: Common terminal
00 to 11	: Input terminal
$\stackrel{\overline{\bar{\sigma}}}{\bar{\sigma}}$: Functional ground terminal : Protective ground terminal
NC	: No connection
+, -	: Power supply terminal
COM	: Common terminal
00 to 11	: Input terminal
NC	: No connection
$\stackrel{\square}{-}$: Protective ground terminal

-40 points

AC power supply
CP2E- $\square 40 \mathrm{D} \square-\mathrm{A}$

$\mathrm{CIO} 0 \times \mathrm{ClO}$																	
L1 L2	-2/N C		1	03	0				11	0			5	07			11
会	\cdots	00	02		04	06	08	10		0	02	04	06		08	10	

DC power supply

CP2E- $\square 40 \mathrm{D} \square$-D

060 points

AC power supply

CP2E- $760 \mathrm{D} \square$-A

DC power supply

CP2E- $\square 60 \mathrm{D} \square$-D

Allocating Built-in Input Terminals to Functions

Input terminals are allocated functions by setting parameters in the PLC Setup. Set the PLC Setup so that each terminal is used for only one function.

E20/30/40/60, S30/40/60 or N20/30/40/60 CPU Units

Terminal block label	Terminal number	PLC Setup						
		Interrupt input settings on Built-in Input Tab Page			High-speed counter 0 to 5 settings on Built-in Input Tab Page			Origin search settings on Pulse Output 0 to 3 Tab Page
		Normal	Interrupt	Quick	Use			Use
		Normal input	Interrupt inputs	Quick-response inputs	Increment pulse input	Differential phase $\times 4$ or up/down	Pulse/ direction	Origin search
ClO 0	00	Normal input 0	---	---	Counter 0, increment input	Counter 0, phase A or up input	Counter 0, pulse input	---
	01	Normal input 1	---	---	Counter 1, increment input	Counter 0, phase B or down input	Counter 1, pulse input	---
	02	Normal input 2	Interrupt input 2	Quick-response input 2	Counter 2, increment input	Counter 1, phase A or up input	Counter 0, direction	---
	03	Normal input 3	Interrupt input 3	Quick-response input 3	---	Counter 1, phase B or down input	Counter 1, direction	---
	04	Normal input 4	Interrupt input 4	Quick-response input 4	Counter 3, increment input	Counter 0, phase Z or reset input	Counter 0, reset input	---
	05	Normal input 5	Interrupt input 5	Quick-response input 5	Counter 4, increment input	Counter 1, phase Z or reset input	Counter 1, reset input	---
	06	Normal input 6	Interrupt input 6	Quick-response input 6	Counter 5, increment input	---	---	Pulse 0, Origin input signal
	07	Normal input 7	Interrupt input 7	Quick-response input 7	---	---	---	Pulse 1, Origin input signal
	08	Normal input 8	Interrupt input $8 * 1$	Quick-response input $8 * 1$	---	---	---	Pulse 2, Origin input signal *2
	09	Normal input 9	Interrupt input $9 * 1$	Quick-response input $9 * 1$	---	---	---	Pulse 3, Origin input signal *2
	10	Normal input 10	---	---	---	---	---	Pulse 0, Origin proximity input signal
	11	Normal input 11	---	---	---	---	---	Pulse 1, Origin proximity input signal
CIO 1	00	Normal input 12	---	---	---	---	---	Pulse 2, Origin proximity input signal *2
	01	Normal input 13	---	---	---	---	---	Pulse 3, Origin proximity input signal $* 2$
	02 to 11	Normal input 14 to 23	---	---	---	---	---	---
ClO 2	00 to 11	Normal input 24 to 35	---	---	---	---	---	---

*1. Only supported by Nロロ-type CPU Units.
*2. Only supported by N30/40/60 CPU Units.
Note: 1. The same pulse inputs must be used for high-speed counter 0 and high-speed counter 1.
2. High-speed counter 2 cannot be used if the input setting of high-speed counter 0 or high-speed counter 1 is set for differential phase inputs $(4 \times)$, pulse + direction inputs, or up/down pulse inputs.

E14 or N14 CPU Units

Terminal block label	Terminal number	PLC Setup						
		Interrupt input settings on Built-in Input Tab Page			High-speed counter 0 to 5 settings on Built-in Input Tab Page			Origin search settings on Pulse Output 0/1 Tab Page
		Normal	Interrupt	Quick	Use			Use
		Normal input	Interrupt inputs	Quick-response inputs	Increment pulse input	Differential phase $\times 4$ or up/down	Pulse/ direction	Origin search
ClO 0	00	Normal input 0	---	---	Counter 0, increment input	Counter 0, phase A or up input	Counter 0, pulse input	---
	01	Normal input 1	---	---	Counter 1, increment input	Counter 0, phase B or down input	Counter 1, pulse input	---
	02	Normal input 2	Interrupt input 2	Quick-response input 2	Counter 2, increment input	Counter 1, phase A or up input	Counter 0, direction	---
	03	Normal input 3	Interrupt input 3	Quick-response input 3	---	Counter 1, phase B or down input	Counter 1, direction	Pulse 0, Origin proximity input signal
	04	Normal input 4	Interrupt input 4	Quick-response input 4	Counter 3, increment input	Counter O, Phase Z or reset input	Counter 0, reset input	---
	05	Normal input 5	Interrupt input 5	Quick-response input 5	Counter 4, increment input	Counter 1, Phase Z or reset input	Counter 1, reset input	Pulse 1, Origin proximity input signal
	06	Normal input 6	Interrupt input 6	Quick-response input 6	Counter 5, increment input	---	---	Pulse 0, Origin input signal
	07	Normal input 7	Interrupt input 7	Quick-response input 7	---	---	---	Pulse 1, Origin input signal

Note: 1. The same pulse inputs must be used for high-speed counter 0 and high-speed counter 1.
2. High-speed counter 2 cannot be used if the input setting of high-speed counter 0 or high-speed counter 1 is set for differential phase inputs $(4 \times)$, pulse + direction inputs, or up/down pulse inputs.

CP2E

Built-in Outputs

Terminal Arrangements

-14 points

AC/DC power supply
CP2E- $\square 14 \mathrm{D} \square-\square$

00 01 02 03 04 05 $N C$ COM COM NC COM NC COM NC

$$
\begin{aligned}
& \text { COM : Common terminal } \\
& 00 \text { to } 05 \text { : Output terminal } \\
& \text { NC : No connection }
\end{aligned}
$$

020 points

AC/DC power supply
CP2E- $\square 20 \mathrm{D} \square-\square$

00 01 02 03 04 05 07 COM COM NC COM NC COM 06 CIO 100

[^0]
330 points

AC power supply
CP2E- $\square 30 \mathrm{D} \square-\mathrm{A}$

+,- : External supply termina

COM : Common terminal
00 to 07 : Output terminal

DC power supply
CP2E-N30DD-D

NC	00	01	02	04	05	07	00	02
NC	COM	COM	COM	03	COM	06	COM	01
03								
CIO 100	CIO 101							

NC	: No connection
COM	: Common terminal
00 to 07	: Output terminal

CP2E-S30DT-D

$\mathrm{V}+$		00	01	02	04	05	07	00
02								
$\mathrm{~V}-$	COM(V-)	COM	03	COM	06	COM	01	03

[^1]Note: $\operatorname{COM}(\mathrm{V}$-) has been connected with V - in an inner circuit.
CP2E-S30DT1-D

$\mathrm{V}+$								00
01	01	02	04	05	07	00	02	
$\mathrm{~V}-$	$\mathrm{COM}(\mathrm{V}+)$	COM	03	COM	06	COM	01	03

Note: $\operatorname{COM}\left(\mathrm{V}_{+}\right)$has been connected with $\mathrm{V}+$ in an inner circuit.

-40 points

AC power supply
CP2E- $740 \mathrm{D} \square-\mathrm{A}$

DC power supply
CP2E-N40DD-D

NC	00	01		02	03	04		06		00 0		03	0		
N	COM $/ \mathrm{COM}$ [COM ${ }^{\text {COM }}$						05		07	COM	02	COM		05	07

CP2E-S40DT-D

V+	00	01	02		03	04			00	01		3	04		
V		COM(V-)		COM	COM		05	07	COM		02	COM		05	07

Note: $\operatorname{COM}(\mathrm{V}-)$ has been connected with V - in an inner circuit.
CP2E-S40DT1-D

Note: $\mathrm{COM}(\mathrm{V}+)$ has been connected with $\mathrm{V}+$ in an inner circuit.

060 points

AC power supply

CP2E- $\square 60 \mathrm{D}-\mathrm{A}$

DC power supply

CP2E-N60D \square-D

CP2E-S60DT-D

Note: $\mathrm{COM}(\mathrm{V}-)$ has been connected with V - in an inner circuit.
CP2E-S60DT1-D

$\mathrm{V}+$	00	01	02	04	05	07	00	02	04	05	07	00	02	04	05	07
$\mathrm{~V}-$	$\mathrm{COM}(\mathrm{V}+)$	COM	03	COM	06	COM	01	03	COM	06	COM	01	03	COM	06	

Note: $\mathrm{COM}\left(\mathrm{V}_{+}\right)$has been connected with $\mathrm{V}+$ in an inner circuit.

Allocating Built-in Output Terminals to Functions

Output terminals are allocated functions by setting parameters in the PLC Setup. Set the PLC Setup so that each terminal is used for only one function.

Output terminal block		Other than those shown at the right	When a pulse output instruction (ITPL, SPED, ACC, PLS2, or ORG) is executed	PLC Setup	When the PWM instruction is executed	
		Origin search settings on Pulse Output 0 to 3 Tab Page				
Terminal block label	Terminal number		Normal outputs	Fixed duty ratio pulse output		Variable-duty-factor output
		Pulse + Direction Mode		Use	PWM output	
CIO 100	00	Normal output 0	Pulse output 0, pulse	---	---	
	01	Normal output 1	Pulse output 1, pulse	---	PWM output 0	
	02	Normal output 2	Pulse output 0, direction	---	---	
	03	Normal output 3	Pulse output 1, direction	---	---	
	04	Normal output 4	---	Pulse 0, Error counter reset output	---	
	05	Normal output 5	---	Pulse 1, Error counter reset output	---	
	06	Normal output 6	---	Pulse 2, Error counter reset output	---	
	07	Normal output 7	---	Pulse 3, Error counter reset output	---	
CIO 101	00	Normal output 0	Pulse output 2, pulse $* 1$	---	---	
	01	Normal output 1	Pulse output 3, pulse $* 1$	---	---	
	02	Normal output 2	Pulse output 2, direction $* 1$	---	---	
	03	Normal output 3	Pulse output 3, direction $* 1$	---	---	
	04 to 07	Normal output 12 to 15	---	---	---	
CIO 102	00 to 07	Normal output 16 to 23	---	---	---	

*1. Only supported by N30/40/60 CPU Units.

CP2E

I／O Specifications

Specifications

Item		Specification		
Input type		High－speed counter inputs or normal inputs	High－speed counter inputs， interrupt inputs，quick－response inputs or normal inputs	Normal inputs
Input bits	E／S $\square \square$－type and N14 CPU Units	ClO 0.00 and ClO 0.01	ClO 0.02 to ClO 0.07	CIO 0.08 to CIO 0．11， CIO 1.00 to CIO 1.11 and CIO 2.00 to $\operatorname{CIO} 2.11 * 1$
	N20 CPU Units	CIO 0.00 and ClO 0.01	ClO 0.02 to ClO 0.09	CIO 0.10 to CIO 0.11
	N30／40／60 CPU Units	CIO 0.00 to CIO 0.03	ClO 0.04 to ClO 0.09	CIO 0．10，CIO 0．11， CIO 1.00 to CIO 1.11 and CIO 2.00 to CIO $2.11 * 1$
Applicable inputs		2－wire and 3－wire sensors		
Input voltage		24 VDC，＋10\％／－15\％		
Input impedance		$3.3 \mathrm{k} \Omega$	$3.3 \mathrm{k} \Omega$	$4.8 \mathrm{k} \Omega$
Input current		7.5 mA （typical）	7.5 mA （typical）	5 mA （typical）
ON voltage／current		17．0 VDC min．／ 3 mA min．	17．0 VDC min．／ 3 mA min．	14．4 VDC min．／ 3 mA min．
OFF voltage／current		5．0 VDC max．／ 1 mA max．	5．0 VDC max．／ 1 mA max．	5．0 VDC max．／ 1 mA max．
ON response time $* 2$		$2.5 \mu \mathrm{~s}$ min．	$50 \mu \mathrm{~s}$ max．	1 ms max ．
OFF response time $* 2$		$2.5 \mu \mathrm{~s} \mathrm{~min}$ ．	$50 \mu \mathrm{~s}$ max．	1 ms max ．
Circuit configuration				

＊1．The bits that can be used depend on the model of CPU Unit．
＊2．The response time is the delay caused by hardware．The delay set in the PLC Setup（ 0 to 32 ms ，default： 8 ms ）for a normal input must be added to this value．

Interrupt input mode
Pulse plus direction input mode
Increment mode
Up／down input mode
Differential phase mode
E／SDロ－type：0．00／0．01
N14／20：0．00／0．01
N30／40／60： 0.00 to 0.02

N14／20：0．00／0．01
N30／40／60： 0.00 to 0.03

E／Sロロ－type： 0.02 to 0.07
N14： 0.02 to 0.07
N20： 0.02 to 0.09
N30／40／60： 0.04 to 0.09

E／SDロ－type：0．02／0．03
N14／20：0．02／0．03

Output Specifications for Relay Outputs

CP2E- $\square \square \square D R-\square$

Item			Specification
Maximum switching capacity			$\begin{array}{\|l} \hline 2 \text { A } 250 \text { VAC }(\cos \phi=1) \\ 2 \text { A } 24 \text { VDC (4 A/common) } \end{array}$
Minimum switching capacity			10 mA 5 VDC
Service life of relay	Electrical	Resistive load	200,000 operations (24 VDC)
	Electrical	Inductive load	70,000 operations (250 VAC, $\cos \phi=0.4)$
	Mechanic		20,000,000 operations
ON response time			15 ms max .
OFF response time			15 ms max .
Circuit configuration			

Estimating the Service Life of Relays

Under normal conditions, the service life of output contacts is as shown above. The service life of relays is as shown in the following diagram as a guideline.

Output Specifications for Transistor Outputs (Sinking or Sourcing)

 CP2E-N14/20/30/40/60DT(1)- \square, CP2E-S30/40/60DT(1)- \square
Normal Outputs

Item	Specification	
	S \square-type: CIO 100.00 and CIO 100.01 N $\square \square$-type: CIO 100.00, CIO 100.01, CIO 101.00 and CIO 101.01	S $\square \square$-type: CIO 100.02 to CIO 102.07 *2 N $\square \square$-type: CIO 100.02 to CIO 100.07, CIO 101.02 to CIO 102.07 *2
Maximum switching capacity	0.3 A/output, 0.9 A/common $* 1$ 4.5 to 30 VDC CP2E-N14D \square - \square 1.5 A/Unit CP2E-S/N40D $\square-\square: 3.6$ A/Unit CP2E-N20D $\square-\square: 1.8$ A/Unit CP2E-S/N60D $\square-\square: 5.4$ A/Unit CP2E-S/N30D \square - $\square: 2.7$ A/Unit	
Minimum switching capacity	1 mA 4.5 to 30 VDC	
Leakage current	0.1 mA max.	
Residual voltage	0.6 V max.	1.5V max.
ON response time	0.1 ms max.	0.1 ms max.
OFF response time	0.1 ms max.	1 ms max .
Fuse	Not provided.	
External power supply	20.4 to 26.4VDC 30mA max. ($\mathrm{N} \square \square$-type is not needed)	Not needed
Circuit configuration	- S \square-type CPU Unit Sinking output model Sourcing output model - N \square-type CPU Unit Sinking output model Sourcing output model	Sinking output model Sourcing output model

*1. Also do not exceed 0.9 A for the total of CIO 100.00 to CIO 100.03 , which are different common.
*2. The bits that can be used depend on the model of CPU Unit.
Note: 1. Do not connect a load to an output terminal or apply a voltage in excess of the maximum switching capacity.

Pulse Outputs

Item	Specification
	S \square-type: CIO 100.00 and CIO 100.01 N $\square \square$-type: CIO 100.00, CIO 100.01, CIO 101.00 and CIO 101.01
Maximum switching capacity	100 mA 4.5 to 26.4 VDC
Minimum switching capacity	7 mA 4.5 to 26.4 VDC
Maximum output frequency	100 kHz
Output waveform	The OFF and ON refer to the output transistor. The output transistor is ON at level " L ".

Note: 1. The load for the above values is assumed to be the resistive load, and does not take into account the impedance for the connecting cable to the load.
2. Due to distortions in pulse waveforms resulting from connecting cable impedance, the pulse widths in actual operation may be smaller than the values shown above.

PWM Output (CIO 100.01)

| Item | Specification |
| :--- | :--- | :--- |
| Maximum switching capacity | 30 mA 4.5 to 26.4 VDC |
| Maximum output frequency | 32 kHz |
| PWM output accuracy | For ON duty $+1 \%,-0 \%: 10 \mathrm{kHz}$ output
 For ON duty $+5 \%,-0 \%: 0$ to 32 kHz output |
| Output waveform | OFF |
| | The OFF and ON refer to the output transistor. The output transistor is ON at level "L". |

CP2E

Built-in Ethernet

General Specifications (Ethernet)

	Item	Specifications	
	Type	100BASE-TX (Auto-MDIX)	10BASE-T (Auto-MDIX)
Number of Ethernet ports		N14/20 CPU Units: 1 port N30/40/60 CPU Units: 2 ports (Switching	ction is built in.)
Transfer	Media access method	CSMA/CD	
	Modulation method	Baseband	
	Transmission paths	Star form	
	B	$100 \mathrm{Mbit/s}$ (100Base-TX) Auto-Negotiation	$10 \mathrm{Mbit} / \mathrm{s}$ (10Base-T) Auto-Negotiation
		- Half/full auto-negotiation for each port - Link speed auto-sensing for each port	
	Transmission media	- Unshielded twisted-pair (UDP) cable Categories: 5, 5e - Shielded twisted-pair (STP) cable Categories: 100Ω at $5,5 e$	- Unshielded twisted-pair (UDP) cable Categories: 3, 4, 5, 5e - Shielded twisted-pair (STP) cable Categories: 100Ω at $3,4,5,5 e$
	Transmission distance	100 m (distance between hub and node)	
Protocols		TCP, UDP, ARP, ICMP (ping only), SNTP, DNS	

FINS Communications Service Specifications

Item	Specification	
Protocol name	FINS/UDP	FINS/TCP
Number of nodes	254	
Message Length	1016 bytes max.	
Date Length	1004 bytes max.	
Number of buffer	16	
Protocol used	UDP/IP	TCP/IP
	The selection of UDP/IP or TCP/IP is made by means of the FINS/UDP or FINS/TCP button in Builtin Ethernet Tab in the CX-Programmer's PLC Setup.	
Number of connections	---	3 for user, 1 for CX-Programmer auto connection
Port number	9600 (default) Can be changed.	9600 (default) Can be changed.
Protection	No	Yes (Specification of client IP addresses when unit is used as a server)
Local IP address	192.168.250.FINS node address	

Switching Hub for CP2E Nロロ-type CPU Units

Ethernet	100Base-TX, 10Base-T
Auto MID/MID-X	Yes
Auto negotiation	Yes
Store-and-forward system	Yes
Buffer	32 K bytes
MAC address	1000
Broadcast storm detection	Yes
QoS	No
SNMP	No
VLAN	No
IGMP snooping	No
STP (Spanning Tree Protocol)	No
Port mirroring	No

Serial Communication

Note: 1. CP2W-CIFD \square can only be mounted on option slot 1.

Serial Communication Option Board

Model numbers	Port	Maximum transmission distance	Connection method
CP1W-CIF01	One RS-232C port	15 m	Connector (D-sub, 9 pin female)
CP1W-CIF11	One RS-422A/485 port (not isolated)	50 m	Terminal block (using ferrules)
CP1W-CIF12-V1	One RS-422A/485 port (isolated)	500 m	Terminal block (using ferrules)
CP2W-CIFD1	Two RS-232C Ports	15 m	Terminal block (using ferrules)
CP2W-CIFD2	One RS-232C port and one RS-485 port (isolated)	15 m (RS-232C) 500 m (RS-485)	Terminal block (using ferrules)
CP2W-CIFD3	Two RS-485 ports (isolated)	500 m	Terminal block (using ferrules)

Built-in RS-232C Port for E/S $\square \square$-type CPU Units

Pin	Abbr.	Signal Name	Signal direction
1	SD(TXD)	Send data	Output
2	RD(RXD)	Receive data	Input
3	RS(RTS)	Request to send	Output
4	CS(CTS)	Clear to send	Input
5	SG(OV)	Signal ground	-
6	FG	Frame ground	-

Built-in RS-485 Port (2-wire) for S $\square \square$-type CPU Units

RS-485 Terminal Block

A- $\mathrm{B}+\mathrm{FG}$	Pin	Abbr.	Signal Name	Signal direction
4日-7耳	1	A-	Send/Receive data -	-
Ese	2	B+	Send/Receive data +	-
$\xrightarrow{\square}$	3	FG	Frame ground	-

DIP Switch for Terminating Resistance Settings

Setting			
$\mathrm{ON} \hat{\mathrm{U}}$	ON	OFF	
	OFF	OFF	Terminating resistance selection Resistance value: 220Ω typical

CP1W-CIF01 RS-232C Option Board

RS-232C Connector

Pin	Abbr.	Signal	Signal direction
1	FG	Frame ground	Output
2	SD(TXD)	Send data	Input
3	RD(RXD)	Receive data	Output
4	RS(RTS)	Request to send	Input
5	CS(CTS)	Clear to send	
6	5V	Power	Input
7	DR(DSR)	Data set ready	Output
8	ER(DTR)	Data terminal ready	
9	SG(OV)	Signal ground	-
Connector hood	FG	Frame ground	-

Note: 1. The NV3W-MD20L-V1 Programmable Terminal can be connected to pin $6(+5 \mathrm{~V})$ on the RS-232C Option Board (CP1W-CIF01) mounted to the CPU Unit. Do not connect pin 6 to any other device.

CP1W-CIF11/CIF12-V1 RS-422A/485 Option Board

RS-422A/485 Terminal Block

DIP Switch for Operation Settings

CP1W-CIF11		CP1W-CIF12-V1		Setting		
	Pin		Pin			
SW	1	SW1	1	ON	ON (both ends)	Terminating resistance selection Resistance value: 220Ω typical
				OFF	OFF	
	2	Z		ON	2-wire connections	
				OFF	4-wire connections	2-wire or 4-wire selection $* 1$
	3	$\square \square \square \square \square \square \square$	3	ON	2-wire connections	2-wire or 4-wire selection *1
0 Z				OFF	4-wire connections	2-wire or 4-wire selection $* 1$
	4		4	-	-	Not used.
				ON	RS control enabled	
	5	02	1	OFF	RS control disabled (Data always received.)	RS control selection for RD*2
				ON	RS control enabled	
	6	$\stackrel{\mid \stackrel{\rightharpoonup}{\square}}{\sim}$	2	OFF	RS control disabled (Data always sent.)	RS control selection for SD*3

*1. Set both pins 2 and 3 to either ON (2-wire) or OFF (4-wire).
*2. To disable the echo-back function, set pin 5 to ON (RS control enabled).
$* 3$. When connecting to a device on the N side in a 1: N connection with the 4 -wire method, set pin 6 to ON (RS control enabled).
Also, when connecting by the 2-wire method, set pin 6 to ON (RS control enabled).

CP2W-CIFD1 RS-232C\&RS-232C Option Board

RS-232C\&RS-232C Terminal Block

Port	Pin	Abbr.	Signal Name	Signal direction
PORT \square	1	SD(TXD)	Send data	Output
	2	RD(RXD)	Receive data	Input
	3	SG(OV)	Signal ground	---
	4	FG	Frame ground	---
	5	SD(TXD)	Send data	Output
	6	RD(RXD)	Receive data	Input
	7	SG(OV)	Signal ground	---
	8	FG	Frame ground	-

Note: 1. CP2W-CIFD1 can only be mounted on option slot 1.
PORT \square is supported by serial port 1 and PORT \square (EX) is supported by serial port 1(EX).

CP2W-CIFD2 RS-232C\&RS-485 Option Board

Rear

RS-232C\&RS-485 Terminal Block

	Port	Pin	Abbr.	Signal Name	Signal direction
	PORT \square	1	SD(TXD)	Send data	Output
		2	RD(RXD)	Receive data	Input
		3	SG(0V)	Signal ground	---
		4	FG	Frame ground	---
(e)	PORT \square (EX)	5	A-	Send/Receive data -	Output
		6	B+	Send/Receive data +	Input
		7	FG	Frame ground	---
		8	NC	NC	---

Note: CP2W-CIFD2 can only be mounted on option slot 1.
PORT \square is supported by serial port 1 and PORT \square (EX) is supported by serial port 1 (EX).
DIP switch for terminating resistance settings

Setting			
$\begin{gathered} \text { RS-485 } \\ \text { TERMM } \end{gathered}$	ON	ON (both ends)	Terminating resistance selection Resistance value: 220Ω typical
¢ \square	OFF	OFF	

CP2W-CIFD3 RS-485\&RS-485 Option Board

RS-485\&RS-485 Terminal Block

	Port	Pin	Abbr.	Signal Name	Signal direction
-		1	A-	Send/Receive data -	Output
	PORT \square	2	B+	Send/Receive data +	Input
bibatadea	PORT	3	FG	Frame ground	---
\bigcirc		4	NC	NC	---
		5	A-	Send/Receive data -	Output
RS-485 ${ }^{\text {R }}$ RS-485	P	6	B+	Send/Receive data +	Input
	PORT	7	FG	Frame ground	---
		8	NC	NC	---

Note: 1. CP2W-CIFD3 can only be mounted on option slot 1.
PORT \square is supported by serial port 1 and PORT \square (EX) is supported by serial port 1 (EX).
DIP switch for terminating resistance settings

Pin		Setting		
	1	ON	ON (both ends)	Terminating resistance selection Resistance value: 220Ω typical
		OFF	OFF	
	2	---	---	Not used.
	3	---	---	Not used.
	4	ON	ON (both ends)	Terminating resistance selection Resistance value: 220Ω typical
		OFF	OFF	

Analog Option Board

$N \square \square$-type CPU Units

Note: 1. Maximum one Analog Option Board can be mounted on an N $\square \square$-type CPU Unit.
If two Analog Option Boards are mounted, an option board error will occur and both Analog Option Boards do not work.

Analog Option Board

Analog option board units are non-isolated analog units which allow you to easily realize analog input/output function for CP2E N $\square \square$-type CPU Unit.

Analog Option Board		Voltage Input 0V~10V (Resolution: 1/4000)	Current Input OmA~20mA (Resolution: 1/2000)	Voltage Output OV~10V (Resolution: 1/4000)
Analog I/O Option Board	CP1W-MAB221	2 CH	2CH	
Analog Input Option Board	CP1W-ADB21	2 CH	---	
Analog Output Option Board	CP1W-DAB21V	---	2 CH	

Specifications of Analog Option Board

 CP1W-ADB21| Item | Specifications | |
| :--- | :--- | :--- |
| | Voltage Input | Current Input |
| Input signal range | 0 to 10 V | 0 to 20 mA |
| Max. rated input | 0 to 15 V | 0 to 30 mA |
| External input impedance | $200 \mathrm{k} \Omega$ min. | Approx. 250Ω |
| Resolution | $1 / 4000$ (full scale) | $1 / 2000$ (full scale) |
| Overall
 accuracy | $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ | $\pm 0.5 \%$ (full scale) |
| | $\mathbf{0}$ to $\mathbf{6 0} \mathbf{C}$ | $\pm 0.6 \%$ (full scale) |
| | $\mathbf{- 2 0}$ to $\mathbf{0}^{\circ} \mathbf{C}$ | $\pm 1.0 \%$ (full scale) |
| A/D conversion data | $\pm 1.3 \%$ (full scale) | $\pm 1.5 \%$ (full scalle) |
| Averaging function | None | |
| Isolation method | No isolation between analog I/O terminals and
 internal circuits. | |
| Current consumption | 5 VDC: 20 mA max. | |

CP1W-DAB21V

Item		Specifications	
		Voltage Output	Current Output
Output signal range		0 to 10 V	---
External output allowable load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	---
External output impedance		0.5Ω max.	---
Resolution		1/4000 (full scale)	---
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)	---
	0 to $60^{\circ} \mathrm{C}$	$\pm 1.0 \%$ (full scale)	---
	-20 to $0^{\circ} \mathrm{C}$	$\pm 1.3 \%$ (full scale)	---
Set data (D/A conversion)		0000 to OFA0 Hex	---
Isolation method		No isolation between analog I/O terminals and internal circuits.	
Current consumption		5 VDC: 60 mA max.	

CP1W-MAB221

Item			Specifications	
			Voltage I/O	Current I/O
Analog Input Section	Input signal range		0 to 10 V	0 to 20 mA
	Max. rated input		0 to 15 V	0 to 30 mA
	External input impedance		$200 \mathrm{k} \Omega \mathrm{min}$.	Approx. 250Ω
	Resolution		1/4000 (full scale)	1/2000 (full scale)
	Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)	$\pm 0.6 \%$ (full scale)
		0 to $60^{\circ} \mathrm{C}$	$\pm 1.0 \%$ (full scale)	$\pm 1.2 \%$ (full scale)
		-20 to $0^{\circ} \mathrm{C}$	$\pm 1.3 \%$ (full scale)	$\pm 1.5 \%$ (full scale)
	A/D conversion data		0000 to OFAO Hex	0000 to 07D0 Hex
	Averaging function		None	
Analog Output Section	Output signal range		0 to 10 VDC	---
	External output allowable load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	---
	External output impedance		0.5Ω max.	---
	Resolution		1/4000 (full scale)	---
	Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)	---
		0 to $60^{\circ} \mathrm{C}$	$\pm 1.0 \%$ (full scale)	---
		-20 to $0^{\circ} \mathrm{C}$	$\pm 1.3 \%$ (full scale)	---
	Set data (D/A conversion)		0000 to OFAO Hex	---
Isolation method			No isolation between analog I/O terminals and internal circuits.	
Current consumption			5 VDC: 80 mA max.	

Analog Option Board Refresh Time (Typical values)

Analog Opiton Board	Cycle time (ms)		
	$\mathbf{1 ~ m s}$	$\mathbf{1 0} \mathbf{~ m s}$	$\mathbf{2 0} \mathbf{~ m s}$
CP1W-ADB21	$16 \sim 40$	$20 \sim 60$	$20 \sim 100$
CP1W-DAB21V	$9 \sim 37$	$26 \sim 58$	$46 \sim 86$
CP1W-MAB221(AD)	$14 \sim 62$	$18 \sim 109$	$20 \sim 160$
CP1W-MAB221(DA)	$9 \sim 53$	$26 \sim 102$	$46 \sim 150$

Specifications of Expansion I/O Units and Expansion Units

Expandable CPU Units

- Expansion I/O Units and Expansion Units cannot be connected to E14/20 or N14/20 CPU Units.
- A total of up to three Expansion I/O Units and Expansion Units can be connected to an E30/40/60, S30/40/60 or N30/40/60 CPU Unit.

CP2E-E14/20 or N14/20 CPU Unit

CP-series Expansion Units and Expansion I/O Units cannot be connected.

CP2E-E30/40/60, S30/40/60 or N30/40/60 CPU Unit

Connection Methods

Connection cables for the Expansion I/O Units and Expansion Units are used to connect the Units. The length can be extended by using a CP1W-CN811 I/O Connecting Cable (length: 800 mm).

Maximum Number of I/O Points for an Expansion I/O Unit or Expansion Unit

CPU Unit	Built-in I/O on CPU Unit			Total number of Expansion I/O Units and Expansion Units that can be connected	Number of inputs: 24 Number of outputs: 16 Total number of I/O points when three CP1W-40ED \square Expansion I/O Units are connected		
	Total	Number of inputs	Number of outputs		Total	Number of inputs	Number of outputs
CP2E- $\square 14 \mathrm{D} \square$ - \square	14	8	6	Not possible.	14	8	6
CP2E- $\square 20 \mathrm{D} \square$ - \square	20	12	8		20	12	8
CP2E- $\square 30 \mathrm{D} \square$ - \square	30	18	12	3 Units maximum	150	90	60
CP2E- \square 40D \square - \square	40	24	16		160	96	64
CP2E- $\square 60 \mathrm{D} \square$ - \square	60	36	24		180	108	72

CP2E

Specifications of Expansion I/O Units
Input Specifications (CP1W-8ED/20EDR1/20EDT/20EDT1/40EDR/40EDT/40EDT1)

Item	Specification
Input voltage	24 VDC, +10\% / -15\%
Input impedance	$4.7 \mathrm{k} \Omega$
Input current	5 mA typical
ON voltage / current	14.4 VDC min. / 3mA min.
OFF voltage / current	5.0 VDC max. / 1mA max.
ON response time	$1 \mathrm{~ms} \mathrm{max}$. *1
OFF response time	$1 \mathrm{~ms} \mathrm{max}$. *1
Circuit configuration	

Note: 1. Do not apply voltage in excess of the rated voltage to the input terminal.
*1. The response time is the delay caused by hardware. The delay set in the PLC Setup (0 to 32 ms , default: 8 ms) must be added to this value. For the CP1W-40EDR/EDT/EDT1, a fixed value of 16 ms must be added.

Output Specifications

Relay Outputs (CP1W-8ER/16ER/20EDR1/32ER/40EDR)

Item			Specification
Max. switching capacity			2 A, 250 VAC $(\cos \phi=1)$, $2 \mathrm{~A}, 24$ VDC (4 A/common)
Min. switching capacity			$10 \mathrm{~mA}, 5 \mathrm{VDC}$
Service life of relay	Electrical	Resistive load	150,000 operations (24 VDC)
		Inductive load	100,000 operations (240 VAC, $\cos \phi=0.4)$
	Mechanical		20,000,000 operations
ON response time			15 ms max .
OFF response time			15 ms max .
Circuit configuration			

Note: 1. Estimating the Service Life of Relays
The service life of output contacts is as shown in the following diagram.

2. Restrictions of CP1W-16ER/32ER

Limit the output load current to satisfy the following derating curve.

3. CP1W-32ER's maximum number of simultaneously ON output points is $24(75 \%)$.

Relation between Number of ON Outputs and Ambient Temperature (CP1W-32ER)

4. According to the ambient temperature, there are restrictions on power supply voltage and output load current for the CPU Units connected with the Expansion I/O Units (CP1W-8ER/16ER/20EDR1/32ER/40EDR). Use the PLC in the range of the power supply voltage and output load current as show below.

- The ambient temperature is restricted for the DC power supply CPU Units.

Derating curve of the output load current for Expansion I/O Units (CP1W-8ER/16ER/20EDR1/32ER/40EDR).

Transistor Outputs (Sinking or Sourcing)

Item	Specification				
	$\begin{aligned} & \text { CP1W-40EDT } \\ & \text { CP1W-40EDT1 } \end{aligned}$	$\begin{aligned} & \text { CP1W-32ET } \\ & \text { CP1W-32ET1 } \end{aligned}$	CP1W-20EDT CP1W-20EDT1	CP1W-16ET CP1W-16ET1	CP1W-8ET CP1W-8ET1
Max. switching capacity *1	4.5 to 30 VDC 0.3 A/output 0.9 A/common 3.6 A/Unit	4.5 to 30 VDC 0.3 A/output 0.9 A/common 7.2 A/Unit	24 VDC +10\%/-5\% 0.3 A/output 0.9 A/common 1.8 A/Unit	4.5 to 30 VDC 0.3 A/output 0.9 A/common 3.6 A/Unit	4.5 to 30 VDC 0.3 A/output 0.9 A/common 1.8 A/Unit
Leakage current	0.1 mA max.				
Residual voltage	1.5 V max.				
ON response time	0.1 ms max.	0.1 ms max.	0.1 ms .	0.1 ms max.	0.1 ms max.
OFF response time	1 ms max. At 24 VDC $+10 \% /$ $-5 \%, 5$ to 300 mA	1 ms max. At 24 VDC $+10 \% /$ $-5 \%, 5$ to 300 mA	1 ms max. At 24 VDC $+10 \% /$ $-5 \%, 5$ to 300 mA	1 ms max. At 24 VDC $+10 \% /$ -5%, 5 to 300 mA	1 ms max. At 24 VDC $+10 \% /$ $-5 \%, 5$ to 300 mA
Maximum number of simultaneously ON outputs	16 points (100\% load)	24 points (100\% load)	8 points (100\% load)	16 points (100\% load)	8 points (100\% load)
Fuse *2	1 fuse/common				
Circuit configuration			Sourc 24 VDC/4.5 to 30 VDC		

*1. If the ambient temperature is maintained below $50^{\circ} \mathrm{C}$, up to $0.9 \mathrm{~A} /$ common can be used.

*2. The fuse cannot be replaced by the user. Replace the Unit if the fuse breaks due to an short-circuit or overcurrent.
Note: 1. Do not connect a load to an output terminal or apply a voltage in excess of the maximum switching capacity.

Specifications of Expansion Units

Analog Input Units

Model		CP1W-AD041		CP1W-AD042	
Item		Voltage input	Current input	Voltage input	Current input
Number of analog inputs		4 inputs (4 words allocated)			
Input signal range		$\begin{aligned} & 0 \text { to } 5 \mathrm{~V}, 1 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V} \text {, or }-10 \text { to } 10 \mathrm{~V} \end{aligned}$	0 to 20 mA or 4 to 20 mA	0 to $5 \mathrm{~V}, 1$ to 5 V , 0 to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
External input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. 250Ω	$1 \mathrm{M} \Omega$ min.	Approx. 250Ω
Resolution		1/6000 (full scale)		1/12000 (full scale)	
Overall accuracy	$25^{\circ} \mathrm{C}$	0.3\% full scale	0.4\% full scale	0.2\% full scale	0.3\% full scale
	0 to $55^{\circ} \mathrm{C}$	0.6\% full scale	0.8\% full scale	0.5\% full scale	0.7\% full scale
	55 to $60^{\circ} \mathrm{C}$	0.7\% full scale	0.8\% full scale	0.5\% full scale	0.7\% full scale
	-20 to $0^{\circ} \mathrm{C}$	0.8\% full scale	1% full scale	0.7\% full scale	0.9\% full scale
A/D conversion data		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: E890 to 1770 hex Full scale for other ranges: 0000 to 2EEO hex	
Averaging function		Supported (Set in output words $\mathrm{n}+1$ and $\mathrm{n}+2$.)			
Open-circuit detection function		Supported			
Conversion time		$2 \mathrm{~ms} /$ point (8 ms/all points)		$1 \mathrm{~ms} /$ point (4 ms/all points)	
Isolation method		Photocoupler isolation between analog input terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption		5 VDC: 100 mA max.; 24 VDC: 90 mA max.		5 VDC: $100 \mathrm{~mA} \mathrm{max}$. ; 24 VDC: 50 mA max.	

Analog Output Units

Model		CP1W-DA021/CP1W-DA041		CP1W-DA042	
Item		Voltage output	Current output	Voltage output	Current output
Number of analog outputs		CP1W-DA021: 2 outputs (2 words allocated) CP1W-DA041: 4 outputs (4 words allocated)		4 outputs (4 words allocated)	
Output signal range		$\begin{aligned} & 1 \text { to } 5 \mathrm{~V} \text {, } 0 \text { to } 10 \mathrm{~V} \text {, or } \\ & -10 \text { to } 10 \mathrm{~V} \end{aligned}$	0 to 20 mA or 4 to 20 mA	$\begin{aligned} & \hline 1 \text { to } 5 \mathrm{~V}, 0 \text { to } 10 \mathrm{~V} \text {, or } \\ & -10 \text { to } 10 \mathrm{~V} \\ & \hline \end{aligned}$	0 to 20 mA or 4 to 20 mA
External output allowable load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	350Ω max.	$2 \mathrm{k} \Omega \mathrm{min}$.	350Ω max.
External output impedance		0.5Ω max.	---	0.5Ω max.	---
Resolution		1/6000 (full scale)		1/12000 (full scale)	
Overall accuracy	$25^{\circ} \mathrm{C}$	0.4\% full scale		0.3\% full scale	
	0 to $55^{\circ} \mathrm{C}$	0.8\% full scale		0.7\% full scale	
	-20 to $0^{\circ} \mathrm{C}$	1\% full scale		0.9\% full scale	
D/A conversion data		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to OBB8 hex Full scale for other ranges: 0000 to 1770 hex		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: E890 to 1770 hex Full scale for other ranges: 0000 to 2EEO hex	
Conversion time		CP1W-DA021: $2 \mathrm{~ms} /$ point ($4 \mathrm{~ms} /$ all points) CP1W-DA041: $2 \mathrm{~ms} /$ point ($8 \mathrm{~ms} /$ all points)		$1 \mathrm{~ms} /$ point ($4 \mathrm{~ms} / \mathrm{all}$ points)	
Isolation method		Photocoupler isolation between analog output terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption		CP1W-DA021: 5 VDC: 40 mA max.; 24 VDC: 95 mA max. CP1W-DA041: 5 VDC: 80 mA max.; $24 \mathrm{VDC}: 124 \mathrm{~mA}$ max.		5 VDC: 70 mA max.; 24 VDC: 160 mA max.	

Analog I/O Units

Model			CP1W-MAD42/CP1W-MAD44		CP1W-MAD11	
Item			Voltage I/O	Current I/O	Voltage I/O	Current I/O
Analog Input Section	Number of inputs		4 inputs (4 words allocated)		2 inputs (2 words allocated)	
	Input signal range		0 to 5 V , 1 to 5 V , 0 to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA	0 to 5 V , 1 to 5 V , 0 to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
	Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
	External input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. 250Ω	$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. 250Ω
	Resolution		1/12000 (full scale)		1/6000 (full scale)	
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.2\% full scale	0.3\% full scale	0.3% full scale	0.4\% full scale
		0 to $55^{\circ} \mathrm{C}$	0.5\% full scale	0.7\% full scale	0.6\% full scale	0.8\% full scale
		-20 to $0^{\circ} \mathrm{C}$	0.7\% full scale	0.9\% full scale	0.8\% full scale	1\% full scale
	A/D conversion data		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: E890 to 1770 hex Full scale for other ranges: 0000 to 2EEO hex		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
	Averaging function		Supported		Supported (Settable for individual inputs via DIP switch)	
	Open-circuit detection function		Supported			
Analog Output Section	Number of outputs		CP1W-MAD42: 2 outputs (2 words allocated) CP1W-MAD44: 4 outputs (4 words allocated)		1 output (1 word allocated)	
	Output signal range		$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, 0 \text { to } 10 \mathrm{~V} \text {, or } \\ & -10 \text { to } 10 \mathrm{~V} \end{aligned}$	0 to 20 mA or 4 to 20 mA	$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, 0 \text { to } 10 \mathrm{~V} \text {, or } \\ & -10 \text { to } 10 \mathrm{~V} \end{aligned}$	0 to 20 mA or 4 to 20 mA
	Allowable external output load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	350Ω max.	$1 \mathrm{k} \Omega \mathrm{min}$.	600Ω max.
	External output impedance		0.5Ω max.	---	0.5Ω max.	---
	Resolution		1/12000 (full scale)		1/6000 (full scale)	
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.3\% full scale		0.4\% full scale	
		0 to $55^{\circ} \mathrm{C}$	0.7\% full scale		0.8\% full scale	
		-20 to $0^{\circ} \mathrm{C}$	0.9\% full scale		1\% full scale	
	Set data (D/A conversion)		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: E890 to 1770 hex Full scale for other ranges: 0000 to 2EEO hex		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V : F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
Conversion time			CP1W-MAD42: $1 \mathrm{~ms} /$ point ($6 \mathrm{~ms} /$ all points) CP1W-MAD44: $1 \mathrm{~ms} /$ point ($8 \mathrm{~ms} /$ all points)		$2 \mathrm{~ms} / \mathrm{point}$ ($6 \mathrm{~ms} /$ all points)	
Isolation method			Photocoupler isolation between analog I/O terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption			CP1W-MAD42: 5 VDC: 120 mA max., 24 VDC: 120 mA max. CP1W-MAD44: 5 VDC: 120 mA max., 24 VDC: 170 mA max.		5 VDC: 83 mA max., 24 VDC: 110 mA max.	

Temperature Sensors Units

Item		CP1W-TS001	CP1W-TS002	CP1W-TS101	CP1W-TS102
Temperature sensors		Thermocouples		Platinum resistance thermometer	
		Switchable between K and J, but same type must be used for all inputs.		Switchable between Pt100 and JPt100, but same type must be used for all inputs.	
Number of inputs		2	4	2	4
Allocated input words		2	4	2	4
Accuracy	$25^{\circ} \mathrm{C}$	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$) ± 1 digit max.		(The larger of $\pm 0.5 \%$ of converted value or $\pm 1^{\circ} \mathrm{C}$) ± 1 digit max.	
	0 to $60^{\circ} \mathrm{C}$	(The larger of $\pm 1 \%$ of converted value or $\pm 4^{\circ} \mathrm{C}$) ± 1 digit max.		(The larger of $\pm 1 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$) ± 1 digit max.	
	-20 to $0^{\circ} \mathrm{C}$	(The larger of $\pm 1.3 \%$ of converted value or $\pm 5^{\circ} \mathrm{C}$) ± 1 digit max. $* 1$		(The larger of $\pm 1.3 \%$ of converted value or $\pm 3^{\circ} \mathrm{C}$) ± 1 digit max.	
Conversion time		250 ms for 2 or 4 input points			
Converted temperature data		16-bit binary data (4-digit hexadecimal)			
Isolation		Photocouplers between all temperature input signals			
Current consumption		5 VDC: 40 mA max., 24 VDC: 59 mA max.		5 VDC: 54 mA max., 24 VDC: 73 mA max.	

*1. Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.
The rotary switch is used to set the temperature range.

Setting		CP1W-TS001/TS002			CP1W-TS101/TS102		
		Input type	Range (${ }^{\circ} \mathrm{C}$)	Range (${ }^{\circ} \mathrm{F}$)	Input type	Range (${ }^{\circ} \mathrm{C}$)	Range (${ }^{\circ} \mathrm{F}$)
	0	K	-200 to 1,300	-300 to 2,300	Pt100	-200.0 to 650.0	-300.0 to 1,200.0
	1		0.0 to 500.0	0.0 to 900.0	JPt100	-200.0 to 650.0	-300.0 to 1,200.0
	2		-100 to 850	-100 to 1,500	---	Cannot be set.	
	3	J	0.0 to 400.0	0.0 to 750.0	---		
	4 to F	---	Cannot be set.		---		

Main Specifications

Item			CP1W-TS003
Temperature sensors			Thermocouples or analog input *1
			Switchable between K and J, but same type must be used for all inputs.
Number of inputs			4
Allocated input words			4
Max. number of Units			3
Accuracy	$25^{\circ} \mathrm{C}$	Thermocouple inputs	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$) ± 1 digit max. $* 2$
		Analog voltage inputs	0.5\% full scale
		Analog current inputs	0.6\% full scale
	0 to $60{ }^{\circ} \mathrm{C}$	Thermocouple inputs	(The larger of $\pm 1 \%$ of converted value or $\pm 4^{\circ} \mathrm{C}$) ± 1 digit max. $* 3$
		Analog voltage inputs	1.0\% full scale
		Analog current inputs	1.2\% full scale
	-20 to $0^{\circ} \mathrm{C}$	Thermocouple inputs	(The larger of $\pm 1.3 \%$ of converted value or $\pm 5^{\circ} \mathrm{C}$) ± 1 digit max. $* 3$
		Analog voltage inputs	1.2\% full scale
		Analog current inputs	1.5\% full scale
Input signal range		Thermocouple inputs	K: -200.0 to $1300.0^{\circ} \mathrm{C}$ or -300.0 to $2300.0^{\circ} \mathrm{F}$ J: -100.0 to $850.0^{\circ} \mathrm{C}$ or -100.0 to $1500.0^{\circ} \mathrm{F}$
		Analog voltage inputs	0 to $10 \mathrm{~V} / 1$ to 5 V
		Analog current inputs	4 to 20 mA
Resolution		Thermocouple inputs	$0.1{ }^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$
		Analog inputs	1/12000 (full scale)
Max. rated input		Analog voltage inputs	$\pm 15 \mathrm{~V}$
		Analog current inputs	$\pm 30 \mathrm{~mA}$
External input impedance		Analog voltage inputs	$1 \mathrm{M} \Omega \mathrm{min}$.
		Analog current inputs	250Ω
Open-circuit detection function			Supported
Averaging function			Unsupported
Conversion time			250 ms for 4 input points
Converted temperature data			16-bit binary data (4-digit hexadecimal) 2-decimal-place mode is not supported
Converted AD data			16-bit binary data (4-digit hexadecimal)
Isolation			Photocouplers between any two input signals
Current consumption			5 VDC: 70 mA max., 24 VDC: 30 mA max.

*1. Only last two channels can be used as analog input.
*2. Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.
$* 3$. Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 10^{\circ} \mathrm{C} \pm 1$ digit max.

DIP Switch Settings

With the Temperature Sensor Unit's DIP switch, set the input type (temperature or analog input), the input thermocouple type (K or J) and the temperature unit (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$).

SW	Setting				
1	Thermocouple type of temperature sensor			ON	J
				OFF	K
2	Temperature unit			ON	${ }^{\circ} \mathrm{F}$
				OFF	${ }^{\circ} \mathrm{C}$
3	NC				
4	Input type selection for the third input (Input 2)			ON	Analog input
				OFF	Thermocouple
5	Input type selection for the fourth input (Input 3)			ON	Analog input
				OFF	Thermocouple
6	Analog input signal range			ON	1 to $5 \mathrm{~V} / 4$ to 20 mA
				OFF	0 to 10V
Temperature input				Analog input	
Input type		Range (${ }^{\circ} \mathrm{C}$)	Range (${ }^{\circ} \mathrm{F}$)	Input type	Range
K		-200.0 to 1300.0	-300.0 to 2300.0	Voltage	0 to 10V/1 to 5V
J		-100.0 to 850.0	-100.0 to 1500.0	Current	4 to 20 mA

CP2E

Main Specifications

Item		CP1W-TS004
Temperature sensors		Thermocouples
		Switchable between K and J, but same type must be used for all inputs
Number of inputs		12
Allocated input words		2
Allocated output words		1
Accuracy	$25^{\circ} \mathrm{C}$	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$) ± 1 digit max. $* 1$
	0 to $60^{\circ} \mathrm{C}$	(The larger of $\pm 1 \%$ of converted value or $\pm 4^{\circ} \mathrm{C}$) ± 1 digit max. $* 2$
	-20 to $0^{\circ} \mathrm{C}$	(The larger of $\pm 1.3 \%$ of converted value or $\pm 5^{\circ} \mathrm{C}$) ± 1 digit max. *2
Conversion time		500 ms for 12 input points
Converted temperature data		16-bit binary data (4-digit hexadecimal) 2-decimal-place mode is not supported
Isolation		Photocouplers between any two input signals
Current consumption		5 VDC: $80 \mathrm{~mA} \mathrm{max.}$,24 VDC: 50 mA max.
*1 Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max. * 2 Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 10^{\circ} \mathrm{C} \pm 1$ digit max.		
DIP Switch Settings		

SW		Setting		
1	Input type	ON	J	
		OFF	K	
2	Temperature unit	ON	${ }^{\circ} \mathrm{F}$	
		OFF	${ }^{\circ} \mathrm{C}$	

Temperature input		
Input type	Range $\left({ }^{\circ} \mathrm{C}\right)$	Range $\left({ }^{\circ} \mathrm{F}\right)$
K	-200.0 to 1300.0	-300.0 to 2300.0
J	-100.0 to 850.0	-100.0 to 1500.0

CPU Units with 14 or 20 I/O Points

CP2E-N14/20D $\square-\square$

CP2E-E14/20D $\square-\square$

CPU Units with 30 I/O Points CP2E-N30D $\square-\square$

CP2E-E30D $\square-\square$, CP2E-S30D $\square-\square$

CP2E

CPU Units with 40 I/O Points CP2E-N40DI-D

CP2E-E40D $\square-\square$, CP2E-S40D $\square-\square$

CPU Units with 60 I/O Points

CP2E-N60D $\square-\square$

CP2E-E60D $\square-\square$, CP2E-S60D $\square-\square$

Expansion I/O Units and Expansion Units

 CP1W-8ED

CP1W-20ED $\square / C P 1 W-16 E \square \square / C P 1 W-A D 04 \square / C P 1 W-D A 021 / C P 1 W-D A 04 \square / C P 1 W-M A D \square$ CP1W-TS $\square \square 1 / \square \square 2 / \square \square 3$

CP1W-40ED $\square / C P 1 W-32 E \square \square / C P 1 W$-TS004

Comparison of specifications of CP2E and CP1E

Specifications	CP2E			CP1E			
	CP2E-ND	CP2E-S \square	CP2E-ED	CP1E-N■	CP1E-N $\square \square \mathbf{S} \square$	CP1E-ED CP1E-EDDS	CP1E-NA20
Number of built-in I/O points	14/20/30/40/60	30/40/60	14/20/30/40/60	14/20/30/40/60	30/40/60	10/14/20/30/40/60	20
Total number of Expansion units	14/20 points None 30/40/60 points 3 units			14/20 points None 30/40/60 points 3 units			
Lineup Output/power supply type	- Relay/AC - Relay/DC - Transistor (sinking)/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC	- Relay/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC	- Relay/AC	- Relay/AC - Relay/DC - Transistor (sinking)/AC - Transistor (sourcing)/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC	- Relay/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC	- Relay/AC Only 10 points - Relay/DC - Transistor (sinking)/AC - Transistor (sourcing)/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC	- Relay/AC - Transistor (sinking)/DC - Transistor (sourcing)/DC
Program capacity	10K steps	8K steps	4K steps	8K steps	8K steps	2K steps	8K steps
FB capacity	10K steps	8 K steps	4K steps	None			
Function block steps	Yes Languages usable in function block definitions: Ladder diagrams, structured text (ST)			None			
Overhead processing time	0.2 ms	0.15 ms	0.1 ms	0.4 ms			
Instruction execution times	$\begin{aligned} & \text { LD } 0.23 \mu \mathrm{~s} \\ & \text { MOV } 1.76 \mu \mathrm{~s} \end{aligned}$			$\begin{aligned} & \text { LD } 1.19 \mu \mathrm{~s} \\ & \text { MOV } 7.9 \mu \mathrm{~s} \\ & \hline \end{aligned}$			
Data memory capacity	16K words	8 K words	4K words	8 K words	8 K words	2 K words	8K words
IO Memory backup	Built-in non-volatile memory (Batteryless backup)			Built-in SRAM (Battery backup)			
Pulse outputs	N14/20: 2 outputs 100 kHz N30/40/60: 4 outputs 100 kHz (Linear interpolation possible)	$\begin{aligned} & 2 \text { outputs } \\ & 100 \mathrm{kHz} \end{aligned}$	None	2 outputs 100kHz	$\begin{aligned} & 2 \text { outputs } \\ & 100 \mathrm{kHz} \end{aligned}$	None	$\begin{aligned} & 2 \text { outputs } \\ & 100 \mathrm{kHz} \end{aligned}$
High-speed counters (Differential Phase)	N14/20: 2 counters ($50 \mathrm{kHz}, 5 \mathrm{kHz}$) N30/40/60: 2 counters (50 kHz x2)	2 counters ($50 \mathrm{kHz}, 5 \mathrm{kHz}$)		2 counters ($50 \mathrm{kHz}, 5 \mathrm{kHz}$)		2 counters (5 kHz x2)	2 counters ($50 \mathrm{kHz}, 5 \mathrm{kHz}$)
Quick-response Interrupt inputs	8 inputs (6 inputs only for 14 points)	6 inputs		6 inputs (4 inputs only for 10 points)			
Ethernet port	Included N14/20: 1 port N30/40/60: 2 port	None	None	None N30/40/60 only: 1 port (CP1W-CIF41 use)	None	None	1 port (CP1W-CIF41 use)
USB port	None	Included	Included	Included			
Serial port	N14/20: Max 2 port (Option boards use) N30/40/60: Max 3 port (Option boards use)	$\begin{array}{\|l} 2 \text { port } \\ \text { RS-232C } \\ \text { RS-485 } \end{array}$	$\begin{aligned} & 1 \text { port } \\ & \text { RS-232C } \end{aligned}$	N14/20: 1 port RS-232C N30/40/60: Max 2 port RS-232C Option board	1 port RS-232C N30/40/60 S1 Type only: Max 2 port RS-232C RS-485	None	Max 2 port RS-232C Option board
Serial communication protocols	Host Link 1: N NT Link (1: N) No-protocol mode Serial PLC Link (master, slave) Modbus-RTU easy master Modbus-RTU Slave			Host Link 1: N NT Link (1: N) No-protocol mode Serial PLC Link (master, slave) Modbus-RTU easy master			
Option Boards	N14/20: 1 unit N30/40/60: 2 units	None	None	N14/20: None N30/40/60: 1 unit	None	None	1 unit
Clock function	Yes	Yes	None	Yes	Yes	None	Yes
Corresponding battery	CP2W-BAT02 (for clock function)		None	CP1W-BAT01 (for clock function, IO memory backup)		None	CP1W-BAT01
Built-in analog	None			None			Analog input 2channels Analog output 1channel
Analog adjusters	None	None	None	Yes	None	$\begin{aligned} & \text { E } \square \square: \text { Yes } \\ & \text { E } \square \mathrm{S} \text { : None } \end{aligned}$	Yes
Ambient operating temperature	-20 to $60^{\circ} \mathrm{C}$			0 to $55^{\circ} \mathrm{C}$			

Easy to convert CP1E code into CP2E code

Uploaded CP1E code can be converted into CP2E code with just one click.

Examples of replacement of CP1E with CP2E

CP1E-E $\square \square / E \square \square$ S	CP2E-E $\square \square$
CP1E-E10D $\square-\square$	CP2E-E14DR-A or others
CP1E-E14SDR-A/E14DR-A	CP2E-E14DR-A
CP1E-E20SDR-A/E20DR-A	CP2E-E20DR-A
CP1E-E30SDR-A/E30DR-A	CP2E-E30DR-A
CP1E-E40SDR-A/E40DR-A	CP2E-E40DR-A
CP1E-E60SDR-A	CP2E-E60DR-A
CP1E-N \square S	CP2E-S $\square \square$
CP1E-N30SD $\square-\square /$ N30S1D $\square-\square$	CP2E-S30D $\square-\square$
CP1E-N40SD $\square-\square /$ N40S1D $\square-\square$	CP2E-S40D $\square-\square$
CP1E-N60SD $\square-$ D/N60S1D $\square-\square$	CP2E-S60D $\square-\square$

CP1E-N $\square \square$	CP2E-S $\square \square * 1$	CP2E-N $\square \square * 1$
CP1E-N14D $\square-\square$	-	CP2E-N14D $\square-\square$
CP1E-N20D $\square-\square$	-	CP2E-N20D $\square-\square$
CP1E-N30D $\square-\square$	CP2E-S30D $\square-\square$	CP2E-N30D $\square-\square$
CP1E-N40D $\square-\square$	CP2E-S40D $\square-\square$	CP2E-N40D $\square-\square$
CP1E-N60D $\square-\square$	CP2E-S60D $\square-\square$	CP2E-N60D $\square-\square$
CP1E-NA20 $\square-\square$	-	CP2E-N30D $\square-\square+$ CP1W-MAB221 or others

*1. When the AC powered N30/40/60 CPU Unit with relay outputs, or the DC powered N30/40/60 CPU Unit with transistor outputs is used without an option board or with the CP1W-CIF11 Option Board, it is recommended to replace with the CP2E-S \square.
When any of the other CPU units is used with an option board, it is recommended to replace with the CP2E-ND \square.
For details, refer to the Replacement Guide from CP1E to CP2E (Cat. No. P150).

Related Manuals

Manual name	Cat. No.	Model numbers	Application	Contents

Microsoft, Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. Other company names and product names in this document are the trademarks or registered trademarks of their respective companies. The product photographs and figures that are used in this catalog may vary somewhat from the actual products.

OMRON CANADA, INC. • HEAD OFFICE
Toronto, ON, Canada $\cdot 416.286 .6465 \cdot 866.986 .6766 \cdot$ automation.omron.com

OMRON ELECTRONICS DE MEXICO • HEAD OFFICE

Ciudad de México • 52.55.5901.4300•01.800.386.6766•mela@omron.com

OMRON ELECTRONICS DE MEXICO • SALES OFFICE
San Pedro Garza García, N.L. • 81.12.53.7392•01.800.386.6766•mela@omron. com

OMRON ELETRÔNICA DO BRASIL LTDA • HEAD OFFICE

São Paulo, SP, Brasil • 55.11.2101.6300 • www.omron.com.br

OMRON ARGENTINA • SALES OFFICE

Buenos Aires, Argentina •+54.11.4521.8630 • +54.11.4523.8483
mela@omron.com

OTHER OMRON LATIN AMERICA SALES

$+54.11 .4521 .8630 \cdot+54.11 .4523 .8483 \cdot$ mela@omron.com

OMRON ELECTRONICS DE MEXICO • SALES OFFICE
Eugenio Garza Sada,León, Gto •01.800.386.6766•mela@omron.com

Controllers \& I/O

- Machine Automation Controllers (MAC) • Motion Controllers
- Programmable Logic Controllers (PLC) • Temperature Controllers • Remote I/O

Robotics

- Industrial Robots • Mobile Robots

Operator Interfaces

- Human Machine Interface (HMI)

Motion \& Drives

- Machine Automation Controllers (MAC) • Motion Controllers • Servo Systems
- Frequency Inverters

Vision, Measurement \& Identification

- Vision Sensors \& Systems • Measurement Sensors • Auto Identification Systems

Sensing

- Photoelectric Sensors • Fiber-Optic Sensors • Proximity Sensors
- Rotary Encoders • Ultrasonic Sensors

Safety

-Safety Light Curtains • Safety Laser Scanners • Programmable Safety Systems

- Safety Mats and Edges • Safety Door Switches • Emergency Stop Devices
- Safety Switches \& Operator Controls • Safety Monitoring/Force-guided Relays

Control Components

- Power Supplies • Timers • Counters • Programmable Relays
- Digital Panel Meters • Monitoring Products

Switches \& Relays

- Limit Switches • Pushbutton Switches • Electromechanical Relays
- Solid State Relays

Software

- Programming \& Configuration • Runtime

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Omron:
CP2E-N20DR-A CP2E-N60DT1-D CP2E-N20DT1-D CP2E-N40DT-D CP2E-N60DT-D CP2E-S40DT1-D CP2E-S40DR-A CP2E-E20DR-A CP2E-S40DT-D CP2E-N20DT-A CP2E-N30DR-A CP2E-N40DR-A CP2E-S30DT-D CP2E-E14DR-A CP2E-E30DR-A CP2E-E40DR-A CP2E-N30DR-D CP2E-N30DT-A CP2E-N40DR-D CP2E-N14DTD CP2E-N20DR-D CP2E-S30DR-A CP2E-N30DT-D CP2E-S60DR-A CP2E-N60DT-A CP2E-N14DR-A CP2E-N20DT-D CP2E-N40DT1-D CP2E-S30DT1-D CP2E-S60DT-D CP2E-N60DR-A CP2E-N14DT-A CP2E-N30DT1-D CP2E-N60DR-D CP2E-N14DT1-D CP2E-N40DT-A CP2E-S60DT1-D CP2E-N14DR-D CP2E-E60DR-A

[^0]: COM : Common terminal
 00 to 07 : Output terminal
 NC : No connection

[^1]: COM \quad : Common terminal
 00~07 Output terminal
 $\mathrm{V}_{+} \quad$: External power supply input terminal for CIO 100.00/01 (DC24V)
 External power supply input terminal for CIO 100.00/01 (OV)

